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THE STATISTICAL THERMODYNAMICS OF MIXTURES OF
LENNARD-JONES MOLECULES

I. RANDOM MIXTURES

By W. B. BROWN
Department of Chemistry, University of Manchester
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T - This paper describes a development in the statistical theory of mixtures of spherical molecules. It
. ~ is shown that for a mixture of molecules interacting according to the Lennard-jones inverse-
< power potential, the assumption of random mixing is sufficient to relate the thermodynamic
> > properties of the mixture exacily to those of a reference substance, after the manner of the law of
O E corresponding states; and it is proved in an appendix that only the Lennard-Jones form of the
% — otential energy function leads to this simple result. If the molar configurational Gibbs function
p 8y p 8
O of the reference substance is Gy( T, P), then that of the random mixture is
E g G(T, P, x) =f,Go(T|f, PhJf) —RT In b, +RT Y x, In x,,
o

where x, is the mole fraction of component «, and where f, and %, are dimensionless functions of
the composition involving the characteristic molecular energy and size constants for the inter-
actions of the various species.

This equation is used to discuss the phenomena peculiar to mixtures of substances, under the
headings: mixing effects, phase equilibria, and critical phases. A necessary condition on the inter-
molecular forces for azeotropy to occur in binary mixtures is derived in a simple form which can be
appreciated intuitively; the possibility of a lower critical solution point in these mixtures is examined
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176 W. B. BROWN ON THE

and shown to be unlikely; and the difficulties in the way of deriving the critical or plait-point
curve are outlined. The liquid mixing properties of the system carbon monoxide + methane are
calculated from the theory, and shown to be in fair agreement with experiment.

The Gibbs function of the mixture is analyzed by a Taylor-series expansion, and it is shown
that the first-order terms of the present theory are identical with those of the theory of conformal
solutions, due to Longuet-Higgins, but that the second-order terms involve approximations,
resulting from the assumption of random mixing. Expanded forms of the mixing functions are
derived for the special class of binary mixtures whose characteristic energy and size constants obey
geometric and arithmetic mean rules respectively, and the signs of these functions are discussed.

1. INTRODUCTION

During the last five or six years there have been two important advances in the statistical
thermodynamics of liquid mixtures of small spherical molecules. They are the theory of
conformal solutions, due to Longuet-Higgins (1951), and the cell theory of solutions, which
has been developed by Prigogine and his colleagues (1950, 1953, 1956).

The importance of Longuet-Higgins’s work may be described as primarily theoretical,
and consisted in showing that a first-order perturbation treatment of the configuration
integral for certain mixtures leads to a simple relation between the thermodynamic pro-
perties of the mixture and those of a single reference substance. The mixtures for which
this is true are those whose various intermolecular energy functions obey an extended form
of the relation, discovered by Pitzer (1939), leading to the law of corresponding states;
these may be called conformal mixtures. Apart from this, no assumptions were made regarding
the form of the intermolecular energy functions, or the structure of the liquid state. This
first-order theory appeared to account for the existing data on non-polar solutions in a more
or less quantitative manner, and had the distinction of relating the volume changes on
mixing to the other mixing effects in a perfectly natural way. Since the theory is valid for
all states of matter, it was also possible to apply it to liquid-vapour equilibrium phenomena,
again with satisfactory results (Cook & Longuet-Higgins 1951). However, none of the
mixtures to which the equations were applied could be said to consist of components which
strictly satisfied two of the initial premises of the theory, namely, that the molecules are
non-polar and spherically symmetrical. And, indeed, not long after the appearance of this
theory, it was discovered by Prigogine and his colleagues that binary mixtures of certain
strictly non-polar liquids of similar molar volume, such as neo-pentane and carbon tetra-
chloride, do not obey one of the dominant qualitative features of the first-order theory: that
if the heat and volume of mixing are not zero, they must have the same sign. In fact, neo-
pentane and carbon tetrachloride, and many other pairs of liquids discovered more
recently, cool and contract when mixed (Mathot & Desmyter 1953 ; Thacker & Rowlinson
1953).

The cell theory of solutions has had the striking success of predicting and accounting for
this unexpected behaviour of mixtures of non-polar molecules of the same size. This theory,
which is an extension of the cell theory of pure liquids introduced by Lennard-Jones &
Devonshire (1937), assumes that the molecules interact according to the central inverse-
power potential used by Lennard-Jones, and that the distribution of the different molecules
among the cells of the lattice is a random one. Although this last assumption is not actually
necessary, it has been shown by Prigogine & Garikian (1950) and by Salsburg & Kirkwood
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(1952) that on the cell theory the corrections introduced by deviations from random mixing
are generally small, at least for molecules of the same size. In the absence of exact informa-
tion it is also assumed that the characteristic molecular energy and size parameters for the
interaction of two different molecules are the geometric and arithmetic means respectively
of those of the pure components; this choice is associated with the dispersion forces between
strictly non-polar molecules. In Longuet-Higgins’s treatment, only the arithmetic mean
relation for the sizes was assumed, and the intercomponent energy parameters were left
as empirical constants. A first-order treatment is not sufficient when both the geometric
and the arithmetic mean relations are assumed, since the leading terms in the mixing
functions are then of the second order in differences between the molecular energy and size
parameters. The success of Prigogine’s theory therefore means that it gives correctly the
sign and approximate magnitude of these second-order terms. On the other hand, the
dependence of the results obtained on the cell model, the effective restriction of the equations
to the liquid state, and the approximations introduced to deal with molecules of different
size, are most unsatisfactory features of the theory.

The object of this paper is to show that for mixtures of Lennard-Jones molecules, the use
of the cell model for the liquid state is in fact unnecessary, and that the assumption of random
mixing is in itself sufficient to relate the thermodynamic properties of the mixture exactly
to those of a reference substance, after the manner of the law of corresponding states. The
theory developed has the theoretical advantage of Longuet-Higgins’s treatment, in that it
requires no assumptions regarding the state of matter concerned, and is therefore applicable
to gases and liquids; and the practical advantage of the cell theory, since it can account,
at least qualitatively, for the mixing effects in solutions of strictly non-polar liquids.

2. STATISTICAL METHOD

The treatment about to be described is based on the fundamental equation of classical
statistical mechanics for the Helmholtz free-energy function of a petit ensemble of systems
canonically distributed in phase (Gibbs 19o2). For the system we are considering, which
consists of N molecules whose mutual interactions are conservative, additive and central,
the integrations over internal phases of the molecules and their translational momenta can
be separated out and performed, to leave the integral

F 1 Y
exp (~7) = wrr )o@ (1) 49 (21)

where N, is the number of molecules of species @, and the system contains ¢ components.
This integral relates the configurational free energy F of the system to its potential energy
function %, and is over all configurations ¢ described by the N position vectors r,r,, ..., Iy
of the molecules, within the volume V to which the system is confined. The total free-energy
function is the sum of the configurational free energy and a part due to the internal degrees
of freedom of the molecules and their translational motion. Since the latter can be easily
evaluated, the major problem in statistical thermodynamics is to obtain information about
the configurational free-energy function from equation (2-1).

No attemptwill be made in this paper to evaluate the configuration integral for a mixture,
and indeed this problem has not yet been solved for a pure liquid. All that we shall do is

22-2


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

178 W. B. BROWN ON THE

to relate the configurational free energy, F(T, V, x), of certain mixtures, to that of a refer-
ence system of N identical molecules, Fy(T, V), by means of the assumption of random
mixing, which we now go on to consider.

3. RANDOM-MIXING APPROXIMATION

The random mixing of molecules in a solution is not usually discussed until a model for
the liquid state has been laid down; and this model generally involves a lattice. The idea
then is simply that the probability of finding a molecule of speciesz on anylattice position is
N,/ N, regardless of its environment; that is, to whatever species the neighbouring molecules
belong. Our object here is to extend this idea to petit ensemble theory, in which the mole-
cules of a system are not confined to any particular configuration, such as a lattice, but are
distributed canonically among all possible configurations; that is, with the canonical or
Boltzmann distribution function, proportional to exp (—#/kT). It is clear that in this
general case, the concept of random mixing is best approached directly through the
potential energy function for the system, % (@), and we shall therefore discuss it from this
point of view.

The potential energy of a mixture of molecules, (@ ; 7), depends in general on the
assignment 7 of the various kinds of molecules to the N position vectors ry, Ty, ..., Iy defining
a geometrical configuration @ of the system. Itis only independent of the molecular assign-
ment for a mixture of isotopic components, and only such a mixture is strictly ideal; this
is, in fact, the statistical condition for ideality.t It is therefore evident that the molecules
of an ideal mixture are distributed randomly among the N positions of every geometrical
configuration @), since all such distributions or assignments have the same statistical weight.
However, as we have just seen, this is never true for a non-isotopic solution, and it follows
that the concept of random mixing in a non-ideal solution can only refer to an approxima-
tion, and must be defined. In view of the above remarks, we define the random-mixing
approximation as that in which the properties of the system are calculated by substituting
for the actual potential function % (Q; 7), its a prior: average over all assignments 7, which
we shall denote simply by (#). This definition evidently implies a random distribution of
molecules in every geometrical configuration of the system. The approximate configura-
tional free-energy function is defined by an equation similar to (2-1), namely,

exp(~£1) :NMfexp(—%?) do. (3:1)

The next step is to derive an expression for the randomized potential energy function
(% (Q)) in terms of the intermolecular energy functions for the interaction of the various
molecules. For the system we are considering, in which the molecular forces are additive,
the total potential energy # in any configuration is the sum, over all pairs of positions, of
the interaction energies #* of the molecules in position  and £, that is,

U =73 > utk (3-2)
o Bk

1 This can be seen most easily from the fundamental equation for a grand canonical ensemble of multi-

component systems, when it leads directly to the well-known equations defining an ideal mixture:
Mo =poT,P)+RTInx, (a=1,2,..,0¢).
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The randomized total potential energy is therefore ,
@) =33 @", (33)

where (u?*) is the average interaction energy between the molecules in positions ¢ and £.
Now since the molecules are distributed randomly in every geometrical configuration @, the
probability that positions i and k are occupied by molecules of species « and f is simply
%, %, where x,, is the mole fraction of species a, equal to N,/ N. Therefore, ifu,(r) is the mutual
potential energy of a molecule of species « and a molecule of species f, at a distance r apart,
when 7 and £ are occupied by molecules of species « and f they contribute x,x4u,4(r;) to
the average energy («’*), where r,, = | r;—r, |. Hence

<uik> = E %xaxﬂuaﬂ(rﬂc)' N (3'4)
By substituting into equation (3-3) we get
() = 22 2 2 X, xpUap(Ti)- (3:5)
>k a f

The derivation of this equation may not appear rigorous, but the same result is obtained
by a strictly mathematical method in part II.

These equations reveal the considerable simplification produced by the random-mixing
approximation. This simplification arises from equation (3-3) for (%), which has the form
of the total potential energy for a system of N identical molecules whose intermolecular
energy function is {u(r)). From the standpoint of statistical thermodynamics, a random
mixture is equivalent to a strictly ideal mixture of the same composition, whose isotopic
components have identical intermolecular energy functions, {(«(r)), given by equation (3-4).
The configurational free energy F,(7, V) of any one of these components, which may be
called the equivalent substance for composition x, is given by the integral

. F, 1 U : :
exp(~ﬁ) =]—V—!fexp (——%Tz) d@; (3-6)
and therefore, by equation (3-1), the configurational free energy of the random mixture is
F(T,V,x) =F(T,V)+RT 3 x,Inx,. ' (3:7)

However, since there is a different equivalent substance for each composition, the sim-
plification cannot be exploited unless the various free-energy functions F, can be related in
some way. The possibility of such relations evidently depends on the form of the inter-
molecular energy functions, and in the next section we shall choose a basic form which
makes the desired interrelations possible.

4. LENNARD-JONES MOLECULES

For a system of molecules interacting according to the Lennard-Jones inverse-power
potential, the random-mixing approximation leads to particularly simple results. This
potential can be written in the form (see Fowler & Guggenheim 1939)

u(r) = —pfrm+vjrm (n>m), (4-1)

1 The problem of finding a suitable form for the intermolecular energy functions is attacked a priori in
an appendix.
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where 4 and v are two positive constants, or alternatively as

u(r) = u* [njm (f;)m_nfm (Cr”i)] (4-2)

where #* (< 0) is the minimum energy, and 7* the corresponding distance. These quantities
are related to the attractive and repulsive energy constants # and v by the equations
_ n/(n—m) m m/(n—m) 1/(n—m)
Wt = —(n—m) (‘—‘) (~) and 7% — (ﬂ) . (4-3)
n v mu
We suppose that the different pairs of molecular species interact with potentials of the form
(4-1) having the same indices 7 and m, but different attractive and repulsive energy con-
stants, #,, and v, and therefore different characteristic energies and sizes, uf; and r%;.
It follows immediately from the above formulae that such a system is a particular example
of a conformal mixture (Longuet-Higgins 1951), defined as one in which

uaﬂ(r) :j;cﬂuoo(r/gaﬂ) (“)/? =1,2, '“’0)9 (4'4)
where f, 5 and g, ; are positive dimensionless constants, and u,,(r) is the potential for some
reference species;{ the energy parameter f,; is the ratio of the potential minimum of the
a-f interaction to that of two reference molecules, and the size parameter g, 4 is the ratio of
the corresponding distances. For the special case in which the intermolecular potential
functions are of the form (4-1), we find by means of (4-3) that the interaction parameters
J.p and g, are related to the constants introduced above by the equations

Fop= Usip _ ('”_“/2) n/nmm ("0_0) " (""m’,
i ugy oo Vo (4°5)
and Sup = @kﬁ — (/‘_ooVa,g) He=m)
T rd Hapo0 ’

where gy, voo and uy, 7 are the corresponding (arbitrary) constants for the reference

substance.
The significance of the random-mixing approximation for mixtures of Lennard-Jones

molecules can be seen immediately by combining equation (3-4) for the average potential
(uy with an equation like (4-1) for the u,,; when we get

u(r)) = —Lmyfrm 4wy, (4-6)
where Wy =73 %xaxﬁﬂaﬁ and ()= %xaxﬁv“ﬂ. (4°7)

The average potential is therefore also conformal to the reference potential uy,(r), and we

may write @)y = fatolr/0), (%)
where £, and g, are now functions of the composition x, defined in terms of the quadratic

functions {x) and (v) by equations similar to (4:5). By substituting for #,, and v,, in terms
of f,5 and g, in these equations, we obtain the relations

Si=(Z Zﬂxaxﬁﬂ;ﬂg:?p)"’ (= (ZaZﬂxaxﬂﬂﬂgZﬂ)""“"""’ (4-9)

+ This differs slightly from the original definition of a conformal solution in that we do not demand that
the f,5 and g, are all close to unity, or that g,, is equal to }(g.,+gpp). Also the g parameter introduced
here is the reciprocal of that used by Longuet-Higgins.
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and &= (2 %xaxﬂfaﬂgz,ﬁ/g %xaxﬂfaﬂg;nﬂ) 1/(n—m)_ (4-10)

For mixtures of molecules of equal size, or more exactly when the g,; are equal for all , 4,
these relations reduce to the simple form

Jo=2 2 %,%5f,5 and g, = constant. - (4-11)
a B

On the other hand, when the f,; parameters are all equal, but some or all of the g,, differ,
neither £, nor g, is independent of composition, and the formulae cannot be simplified.}

Equation (4-8) can be described bysaying that the equivalent substance for composition x
conforms to the reference substance with parameters f, and g,; and therefore the potentials
of all the equivalent substances are simply related to that of the reference substance. In
particular, the minimum energy «¥ and corresponding distance 7¥ of the hypothetical
molecules of an equivalent substance are related to those of the reference substance by the
formulae uf = fufy and rf =gr¥. (412)

The conformal relation of the average potential energy in a random mixture of Lennard-
Jones molecules to that of the reference substance is the key to the treatment given in this
paper. Since pure substances whose intermolecular energies are conformal obey the law
of corresponding states, we can now relate the thermodynamic properties of the random
mixture exactly to those of the reference substance.

5. LAW OF CORRESPONDING STATES

It has been shown by Pitzer (1939) that substances whose intermolecular energies are
conformal, in the sense that they can be written in the form

u(r) = fuoo(r/8), | (5:1)
where f'and g are constants and u,,(7) is a common reference potential, form a family whose
molar configurational free-energy functions are related by the equation

F(T,V) = fFy(T|f, V/l) —RTInh, (5-2)

where /& = g3. This follows from the configuration integral by dimensional considerations,
and implies that the substances obey the same reduced equation of state. The Gibbs function
is more useful for our purposes than the Helmholtz free energy, and it follows from equation
(5-2) that the molar configurational Gibbs functions of conformal substances are related by

G(T, P) = fG,(T|f, Phjf)—RTnh. (53)

Thus the configurational Gibbs functions for the components of the mixture we are con-
sidering are related to that of the reference substance by equations like (5-3) ; for component

o we have G(T,P) = £, Go(T|foo> Pholf) —RT In b, (5-4)

t This difference between the parameters is apparent in their mathematical nature: £, is homogeneous
and of degree 2 in the composition variables, homogeneous and of degree 1 in the energy parameters f,,
and homogeneous and of degree 0 in the size parameters; on the other hand, g, is homogeneous and of
degree 0 in the composition variables and the energy parameters, and homogeneous and of degree 1 in the
size parameters g, z.


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

182 ' W. B. BROWN ON THE

The same arguments can be applied to the equivalent substance for composition «,
whose intermolecular energy function is given by equation (4-8), and show that the con-
figurational free-energy functions F, are related by an equation like (5-2), and that the con-
figurational Gibbs function is |

G(T, P) = f.Go(Tf., Ph[f,) —RTIn h,, (5-5)

where f, = g}. The molar configurational Gibbs function of the random mixture is therefore
given by the equation, which can be derived from (3-7),

G(T,P,x) =f.Gy(T|f,, PhJf,) —RTIn lzﬁ—RTZ x,Inx,. (5-6)

This completes the demonstration that the thermodynamic properties of a random
mixture of Lennard-Jones molecules can be related exactly to those of a reference substance.
In particular, it should be noticed that single phases of the mixture must obey the same
reduced equation of state as the reference substance, in the sense that if

B(PV, T)=0 | (5-7)

is the equation of state of the reference substance, then that of the mixture is

¢(B, V, T)=¢(Phy/fs VIR TIf.) = 0, (5-8)

where f, and %, are given by (4-9) and (4:10). We shall postpone discussion of the rather
difficult question of the liquid-vapour critical phases until § 10.

Itis evident that equation (5-6) suffices to discuss all the phenomena peculiar to mixtures
of substances, such as mixing effects, phase equilibria, critical phases and so on, and in the
succeeding sections we shall use the equation for this purpose. It should be noticed that
(6+6) is valid for all values of the interaction parameters f,, and g,4, subject only to the
condition that the mixing is random, in the sense of § 3; deviations from random mixing
will be discussed in part II. No special assumptions have been made which limit the
application of the equation to any particular phase, but reflexion suggests that the random-
mixing approximation is more appropriate to condensed phases than to gases, since in
the former a molecule has many neighbours, but in the latter only one or two. The interest
in this paper is therefore principally in liquid mixtures, and in the next section expressions
will be derived for the excess mixing functions.

6. THERMODYNAMIC FUNCTIONS OF MIXING

The thermodynamic functions of mixing for constant temperature and pressure can all
be derived by differentiation from the molar Gibbs function of mixing, G¥, which is defined

b_y GM(T,P,x) = G(T,P,x)—3 x,G,(T, P), (6:1)

where G, G,,G,, ...,G, are the total Gibbs functions of the mixture and the pure com-
ponents respectively. Since the contributions of the components to the non-configurational
part of the total Gibbs function for a mixture are additive, this definition holds if the func-
tions on the right-hand side are only the configurational parts we have been dealing with.
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We can therefore use equations (5:6) and (5-4) to obtain an expression for GM, and this
yields the following equation for the excess molar Gibbs function of mixing, GE:

GA(T, P, 2) = f,Co(Tlf oo Pholf) = 2 %o foa Col Tlfaoo Phaalfoa) = RT 2 5,10 (B[ o). (6:2)

In general this function will vanish for all compositions x only if the conformal energy
and size parameters, f,, and 4,4, are all equal. Since the thermodynamic condition for an
ideal mixture is that GZ is zero for all compositions, this means that only isotopic mixtures
are strictly ideal. This conclusion is in keeping with the remarks on ideal mixtures in § 3.
The condition frequently quoted on the basis of the theory of strictly regular solutions
(Guggenheim 1952), namely, that for molecules of equal size,

foc,B = %(fococ +.f;9ﬂ) for all &, /?3

is inadequate. In § 11 it will be shown that this merely ensures that the first-order terms are
zero in a Taylor-series expansion of GZ, and that in general the higher-order terms will not
be negligible unless the parameters £, are almost equal for all components.

By differentiating equation (6-2) with respect to temperature, we find that the excess
molar entropy of mixing is given by

SE(T, Py x) = So( Tfor Phf) = 2 %S0 T faoo Phaalfoa) + R 2 55 10 (hifhog)s - (6:3)

where Sy( 7, P) is the molar configurational entropy of the reference substance at tempera-
ture 7 and pressure P. It should be emphasized that this expression has nothing to do with
deviations from random mixing, since the latter has, of course, been assumed in the deriva-
tion. Indeed, it is quite correct to call it the excess entropy of random mixing. The heat or
enthalpy of mixing can be obtained from (6-2) and (6-3), and may be written in the form

HE(T, P, x) = f Ho(T[fo Phf) — 2 oS auHo( T foer Phaalfaa)s - (64)

where H,(T,P) is the molar configurational enthalpy of the reference substance. The
volume of mixing is readily found by differentiating equation (6-2) with respect to pressure,

and is VE(T, P,2) = hVy(Tlfu PhJf) — 3 %uhuaVo Tlfows Phoalfie), (6:5)

where V(T P) is the molar volume of the reference substance.

Expressions for the change in second-order derivatives on mixing, such as the heat
capacity, thermal expansivity and compressibility, can be found by differentiating equa-
tion (6-2) once more. The thermodynamic functions of mixing for constant temperature
and volume can also be derived in a similar way from the configurational Helmholtz
free-energy functions, but are not of comparable interest.

(a) Approximate equations

The formulae above give the mixing functions as actual differences between expressions
for the functions of the mixture, and those of the components at the same temperature and
pressure. It is evidently more convenient to express the mixing functions in terms of
various parameter differences, having thermodynamic coeflicients. Approximate expres-
sions of this type can be obtained by assuming that in the vicinity of any state (7, P) of the
reference substance, the volume is a linear function of the temperature and pressure, and

23 Vor. 250. A.
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the isobaric configurational heat capacity is constant. These assumptions may be expressed
in the form

2
Cpyp = — T(g_]%))l, = constant,

_ (%G _ [ | .
Vyay = ((?T(?P)P = constant, | (6-6)

2
Voko = — (30—1?29) . constant,

where Cyy, V;, ¢, and «, are the molar isobaric configurational heat capacity, the molar
volume, the expansivity and the compressibility of the reference substance. By integrating
equations (6-6) over the range (7, P) to (7", P’) we obtain
G(T",P") =Uy—T'Sy+PVy+(T'—T) Cooy— T'CpoIn (T"| T
+(T"=T) (P'=P) Voo —3(P'—P)*Vyko,  (6°7)
where U, and §, are the molar configurational energy and entropy of the reference sub-
stance, and all functions on the right-hand side with suffix zero are for temperature 7 and
pressure P. By using this expression in equation (6-2) for the excess molar Gibbs function
we get |
GE(T,P,x) = (Uy— TCpy+PTVyoty— 3PV k) fE+ TCpyInE f—RT InF h
+PV(1 — Tag+ Pio) K2+ PTVoao(h[f )7 — §PWoko(R2[f)",  (6°8)

where the superscript £ denotes the excess of any parameter over its average for the com-

ponents; that is, SE=f— aZ Xy Joas
lnEf= lnj;;— z Xg ln.f:xa’ (6'9)

etc.
Expressions for the other mixihg functions can be obtained from (6-8) by differentiating

with respect to temperature and pressure. For liquids under ordinary pressures it is justi-
fiable to put the pressure equal to zero, which leads to the equations

GE = (Uy— TChy) fE+ TCpyInE f— RTInE b,
HE = (Uy— TCpy) %,

SE = —CpyInf f+ RInF h,

VE = Gi[(1— Tao) K-+ Too(hff)F].

(6-10)

Expressions of this kind are used in § 12 to calculate the liquid mixing properties of carbon
monoxide and methane at 90° K.

We shall now consider, on the basis of equations (6-10), the qualitative features of the
mixing effects in two special kinds of mixture: those in which the size parameters are all
equal, and those in which the energy parameters are all equal.
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(b) Isochoric mixtures

For mixtures of molecules of equal size (the same as that of the reference substance),
which we shall call isochoric mixtures, we have

hE=0, Infh=0 and (k/f)E=(1/f)%,
so that equations (6-10) become
GE = U, fE+ TCpy(InE f—fE),
HE = (Uy— TCp) fF,
SE = —CpyInEf,
VE =T, Tay(1[f)E.
In this case the parameter f, is given by equation (4-11), so that

2= 3 3 58 p—~Faa—Ti) (6-12)

It is interesting to compare the above formulae with those derived from the first-order
theory of conformal solutions (Longuet-nggms 1951). For zero pressure the latter may be
written in the form

(6:11)

GE = OfE)
HE = (U,— TChp,) fE,
( 0 PO)f (6‘13)
SE = — POfE7
VE = —V, Ta, fE.

We see that the two equations for the heat of mixing are identical, while those for the
Gibbs free energy, entropy and volume differ in the excess parameters. Although this
difference is evidently a ‘second-order’ one, it is nevertheless important. It means that the
excess mixing functions of equations (6-11) are no longer proportional to one another as
in the first-order theory, and in certain cases thls can lead to a difference in the sign of the
predicted mixing effect.

The excess parameters in question may be written in the form

JE=f—To
n2f = In (), | (614)
() =1f—1/fn
where fA = zxacfocaa
Jo =TI (fu) * | (6:15)
llfH = gxac/f;ca'»

Since, in general, the arithmetic mean is greater than the geometric, which is greater than
the harmonic, we have
’ Ja>Je>Fu (6:16)

Now, according to the first-order equations (6-13), the excess mixing functions GE, HE, SE
and VE all vanish for f, equal to f,, and are all positive or all negative depending on whether

23-2
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Jy is less than or greater than f;. On the other hand, we see from equations (6-11) and (6-14)
that on the more general theory based on the random-mixing approximation,

VER0 i i<
SE=0 i fi< [
HE=0 if fi<f,
GE=0 if f,.<f,

(6:17)

where f” is the value of f, for which GF vanishes, and is necessarily greater than f,. This
means that for small values of the equivalent energy parameter f,, the excess mixing
functions are all positive, and that as f, is increased, the functions decrease to zero and
become negative in the order V%, SE, HE, GE. This behaviour is illustrated graphically in
figure 1 for a hypothetical case. We imagine that the components of the mixture and its
composition are fixed, and that the interaction between molecules of different species is
varied; f, will therefore vary owing to the change in the intercomponent energy parameters

Jap (25).

excess mixing functions

Ficure 1. Variation of the excess mixing functions with the equivalent conformal parameter f,, for
a hypothetical isochoric mixture of fixed composition and fixed components.

We note that for an equimolar binary mixture in which /i3 = fi, f55, we have

Jo=3(fatSe)s

so that in this case GE, HE>0 and &%, VE<O.
This type of mixture is discussed in greater detail in § 11.

(¢) Mixtures with energy parameters equal

It has already been mentioned in §4 that when the conformal energy parameters f,,
are all equal, but the size parameters differ, neither of the equivalent parameters, f, and
k,, has a simple form. However, it can be shown quite generally that f, is less than unity,

that |
so tha FE<0, InPf<0 and (h[f)F>AE.
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Furthermore, if the intercomponent size parameters g, , are given by

8up = %(gaa+gﬂﬂ) _ (“sﬁfz 1,2, ---36)’
it can be shown that FE>0 and Infki>0.

This means that such mixtures always cool and expand when formed, and that the excess
entropy of mixing is positive. It is not possible to predict the sign of GZ from these in-
equalities, but it will be shown in §11 that it is positive.

(d) General case

In the general case in which both the energy and the size parameters are different, it is
only possible to make one general statement about the mixing effects. This statement rests
on an important inequality, which is proved in § 8: if £, is the value of the equivalent con-
formal energy parameter for an isochoric mixture, and f'is the value for a mixture of the
same composition and with the same energy parameters, but any size parameters whatever,

then I<fy (6-18)
where the equality holds only for isochoric mixtures. It follows that fZ< fF, and therefore
that HE> HE, (6-19)

where HT is the heat of mixing for the isochoric mixture; size differences therefore always
increase the heat of mixing.

Unfortunately, it is not possible to tell by mere inspection of the equations what the sign
of the mixing effects will be in the general case. These depend too intimately on the relative
values of the conformal parameters, and also to a lesser extent on the thermodynamic
behaviour of the reference substance. In any case the equations (6:10) are only approximate.
It is therefore more enlightening to analyze the exact equations, given at the beginning of
the section, by a Taylor-series expansion, and this will be undertaken in §11.

7. CHEMICAL POTENTIALS

The complete chemical potentials of the components of a mixture, or their configura-
tional parts, are defined in terms of the corresponding molar Gibbs function G(7, P, x) by

the equations
‘3MG) (@=1,2,...,0), (7-1)
T,P

wal T Po) = (37
where M, is the mass in moles of component «, and M is the total mass of the mixture. Since
G does not depend on the total masses of the components, but only on the mole fractions x,
it is convenient to have a formula for obtaining the potentials which only involves G and
its derivatives with respect to the mole fractions. Furthermore, although only ¢—1 of the
mole fractions x,, x,, ..., ¥, are independent, it is much simpler to work with equations in
which all the mole fractions can be regarded as independent when differentiating. The
required formula may be derived from equation (7-1), and can be written in the form

D
ﬂa=G+DZ (@=1,2,...,0), (7-2)
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where G may depend on all the mole fractions, and
D _ ad & 9
Dx, 0%, 23,
where the ¢ mole fractions may be treated as 1ndependent when differentiating; we observe

that . Dx
D= bu—% (@ =12 .0), (74)

(a=1,2,...,¢), (7-3)

where J,, is the Kronecker delta, equal to unity if « is the same as f§, and equal to zero
otherwise.

The molar configurational Gibbs function of the random mixture is given by equation
(5-6), and, apart from the ideal mixing term, depends on the composition x only through
the conformal parameters fx and 4,. The configurational chemical potentials are therefore

given by
Df dG, Dh dG,

“f "Dx, ok

where G, (T, P) is the molar configurational Gibbs function of the equivalent substance,
given by equation (5-5), and where the suffix ¥ on the conformal parameters has been
dropped. The derivatives of G, with respect to f and % can be obtained by differentiating
the latter equation, and may be written in the following forms:

4 (T, P,x) = G,(T,P)+RTInx,+ (€=1,2,..,¢), (75

((’5}) _ U(T,P))f
o = O(TIAPHD; (7-6)
(7) L =T

— FH(TIf, PhIf)h. (77)

In these expressions U(7, P) is the molar configurational energy of the mixture or the
equivalent substance, and Uy( T, P) is that of the reference substance, while

¥ (T,P) = PV(T,P)—RT (7-8)

is a molar function closely related to the virial of Clausius, and %;( 7, P) is the corresponding

function for the reference substance.
To obtain an expression for the derivative Df/Dx, which occurs in equation (7-5), we
note that according to equations (4-12) and (3-4) the equivalent energy parameter f = f,

b itt ,
may € written f= ; %xaxﬂuaﬁ(ﬁk)/u{%' (7.9)

By differentiating this expression with the help of (7-4), and remembering that 7§ is a
function of composition, we get

_l?_‘]:__ 22 [uaﬂ(r*)_u*] Dln Ty z 2 ﬂ yvﬁy( *) (7,10)

Dx, "% ugo ugy ’
where the functions v(r) are the intermolecular ‘virial’ functions, defined by

du (r)

o(r) =r——+* (7-11)
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Now the virial function for the equivalent substance can be derived by differentiating
equation (3-4) with respect to In7, and is therefore

u(r)) = E zxaxﬂvaﬁ(T)S (712)

and it follows from (7-11) that at the distance of minimum energy, the virial correspondmg
to any potential function must vanish. Hence the average virial

= (o)) =0, (7-13)

and consequently the last term in equatlon (7-10) vanishes. The derivative of f can there-
fore be written in the form

> = 2>,;xﬁ<f::e~—f> @=1,2,...0), (7:14)

where the £.%(x) are a new set of parameters, also depending on the composition, defined by

S =gyt fudy. (7-15)

For isochoric mixtures (molecules the same size) f.% is equal to f,s, while for the pure
component a, that is when x, is unity, we have /¥ and f'both equal to f,,. We observe that

according to (7-9) F=3 3 %2, f5(%). (7-16)
a B

The derivative of the conformal size parameter 4 = A, for the random mixture or equi-
valent substance is most easily obtained indirectly by differentiating v}, given by equations
(7-12) and (7-13), with respect to x,. This leads to the relation

D<v( *» =2 E XgVap(r¥) + Dln s

wk = 0, (7-17)

OC

where w¥ denotes (w(r¥)), and w(r) is an intermolecular function defined by

do(r)
dr °’

which occurs naturally in the statistical expression for the elasticity of a substance. Since

w(r) =r——= (7-18)

rf=grgy k=g and wf=fug,
equation (7-17) yields the folldwing expression for Di/Dx,:

Dh
Dx

= L I (7-19)
It is convenient here to introduce another set of composition-dependent parameters
Fiplx), defined by Kty = = 30,5(r8) (7:20)
These parameters vanish for isochoric mixtures and for the pure components. The sign of
the k¥, has been chosen so that they are positive for molecules larger than the average, and
in general for h,, greater than 4, and negative for 4,4 less than . We observe that, according

-12) and (7-13), '
to (7 ) an (7 3), S Zxaxﬂk:ﬂ - 0. (7-21)
a B - '


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

190 W. B. BROWN ON THE
In terms of this parameter, equation (7-19) becomes
Dhr 2k

D—%‘:—]—%xﬂk‘:’:ﬂ ((Z—':‘— 1,2,...,6'). (7'22)

The expressions derived in equations (6), (7), (14) and (22) of this section for the quan-
tities occurring in equation (7-5) may now be substituted to give the following equations
for the configurational chemical potentials:

to(T, P,x) = G(T,P)+RTInx,+2U(T, P) %xﬂ(.f;‘/‘?_f)lf
+2(TP) Saghflf (@=1,2,.00). (723)

It is evident from (7-16) and (7-21) that these expressions satisfy the thermodynamic
relation G(T,P,%) = 3 #0(T, P, ), (724)

where G(T, P, x) is the molar configurational Gibbs function of the mixture, given by

equation (5+6), and it can also be seen that the equations reduce to the correct form for the
pure components; for example, when x,, is unity we have

#(T, P) = G(T, P), (7-25)

the molar configurational Gibbs function for component «, given by equation (5-4). The

Gibbs-Duhem equation is, of course, automatically satisfied by the method of derivation.

The excess chemical potentials #Z( T, P, x) and the activity coefficients y,( 7, P, x) are given
in terms of the chemical potentials of equation (7-23) by

Ue=RTIny,=p,—pl—RTInzx,. (7-26)

Hence ,uf-——Gx—Ga+2U2xﬂ(f“"jg~f)/f+2Vgxﬂk;“ﬁ[f (a=1,2,...,¢). (7-27)

B

It is interesting to note that the particular form chosen for the intermolecular potential,
namely, that of Lennard-Jones, is not explicitly evident in equations (7-23) or (7-27), nor
in the expressions for the parameters f% and kf;. However, the possibility of relating the
properties of mixtures of any composition to the same reference substance, which is implicit
in these equations, does rest exclusively with the Lennard-Jones form of the potential, as
shown in the appendix.

The calculation of the chemical potentials in a random mixture of Lennard-Jones
molecules requires, therefore, the values of the parameters f,, &,, /. and k¥, over the whole
composition range, and a knowledge of the Gibbs function of the reference substance over
ranges of temperature and pressure determined by the extreme values of f, and 4,. Such
calculations will not be undertaken in this paper, but in §9 equations (7-23) will be used
to discuss phase equilibria in mixtures.

8. STARRED CONFORMAL PARAMETERS
The parameters /3 and k};, which may be called the starred conformal parameters, were
introduced in the last section in connexion with the chemical potentials, but also occur
naturally in the theory of deviations from random mixing, which is presented in part II.
In view of their importance, we shall pause here to consider their physical significance, and
to derive alternative expressions for them.
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The starred conformal parameters are defined by equations (7:15) and (7-20); if in the
latter we replace wg, by its value —nmug,, these equations become

fa’!:? = uaﬂ(’f)/u(’)ko (“:ﬂ =1,2, ---10)3 (8'1)

and By = Do, 00 (@F=1,2..0), (8-2)

vap (3

energy

oy

Uap (1)

wp

FiGure 2. Variation of hypothetical intermolecular energy () and virial (v) functions with distance
r for the following interactions: two reference molecules (subscript 00); two molecules of the
equivalent substance (brackets { )); a molecule of species & and one of species £ (subscript ).

We note that the composition dependence of the parameters is due to r)¥, the characteristic
size of the molecules of the equivalent substance for composition ». It can easily be shown
that to the first order in (g,,—g,) and (k,5—%,) we have

fo:‘;? =j:xﬁ> : (8-3)
ki‘ﬂ = 3ﬂﬁ(gaﬂ_gx)/gx
=focﬂ(haﬁ—hx) /hx‘ (8'4)

It follows from these equations that, as we have already mentioned, for isochoric mixtures
(molecules of equal size),
Jd=tfup and E¥=0 (0,f=1,2,...,0). (8-5)
The physical significance of these parameters should be clear from figure 2, in which the
hypothetical energy and virial functionst for the interactions between the following pairs
t In this connexion it is useful to note that for Lennard-Jones molecules, the intermolecular virial and

energy functions are related by equation (9-12).

24 Vor. 250. A.
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of molecules have been plotted against the intermolecular distance: (@) two reference
molecules, (4) two molecules of the equivalent substance, and (¢) a molecule of species «
and one of species f. The energy curve for the last, u,,(r), crosses the vertical line r = 7§ at
energy f.ug;, and the virial curve v,,(r) crosses this line at energy $nm k¥, ud;.

‘The starred energy parameters ff obey important inequalities, which arise from the
fact that the intermolecular energy function u,,(r) has a minimum value of 4, so that

”a/i(’) = u:l:ﬂ =fa,9 U3y
Therefore, by (8-1), Jag<Jfup (%f=12, er)} (8+6)

the inequalities all hold only for an isochoric mixture. The origin of these inequalities is
readily apparent from figure 2. Since, by equation (7-16),

PAD D LEN A | (1)
it follows from (8-6) thatt Jo<2 2 x,%5 fope (8-8)
a f

This inequality was used in discussing mixing effects in § 5 (d). The starred size parameters
kg4 similarly obey the inequalities

31
k> —%f“ﬂ (@,f=1,2,...,¢), (8-9)
where —2 is the ratio of the maximum of a virial function to the minimum of the corre-
sponding energy function, given by

A = (mnfnm)Vin=m), ‘ (8-10)

However, these relations are not of comparable importance with those satisfied by the Sags
since the equalities represent a very extreme case, and cannot all occur together.

To conclude this section alternative expressions will be derived for the starred con-
formal parameters. A dimensionless form ¢ of the reference potential may be defined by

m

¥ (2) —%n_nmt”‘—n_mt", (8-11)

and the corresponding form y of the reference virial defined by

x() =~

- n’ﬁ”m (e —tm). (8:12)

According to equations (4-2) and (7:11) the reference enérgy and virial functions can then
be written as -

ugo(r) = ugo ¥ (135/1), (8:13)
and Voo(T) = uyx(rik /7). (8-14)

T Relation (8-8) can be deduced directly from equation (4-9) defining f by the use of Holder’s inequality
(see Ferrar 1943).
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It follows from equations (8:1) and (8:2), and the conformal relations (4-4), that the
expressions for f % and £ in terms of these functions are

faﬂ; =faﬂ¢(gaﬂ/gx)3 (8'15)
and k=2 foa(uplts). (8:16)

In these formulae the composition dependence of the starred conformal parameters is
relegated to the molecular size parameter of the equivalent substance, g,, which is given by
equation (4:10). The inequalities (8:6) follow from (8:15) by observing that ¢ has the
maximum value ¥(1), equal to unity.

After this short interlude, we shall now proceed to develop some of the thermodynamic
consequences of the equations for the chemical potentials derived in the previous section.

9. PHASE EQUILIBRIA

In this section we shall discuss briefly some aspects of two different kinds of phase equi-
libria of special interest in mixtures: the equilibrium between two or more liquid phases
containing partially miscible components, and the equilibrium between a liquid mixture
and its vapour. While the latter is, of course, a universal phenomenon, the occurrence of
limited miscibility depends on the nature of the various molecular interactions in a mixture.
Some of the conditions on the parameters f,,; and £, for this to happen will be discussed in
connexion with the conditions for material stability in the next section. For the moment
we shall merely formulate the conditions for such an equilibrium on the assumption that
it can occur.

(a) Liquid-liquid phase equilibrium

The condition for material equilibrium between two phases at the same temperature and
pressure is that the chemical potentials for each component shall be equal in the two phases.
Since in this theory the non-configurational parts of the chemical potentials will be identical
in both phases, in formulating the condition it is only necessary to equate the configurational
chemical potentials, given by equations (7-23). Therefore, distinguishing the phases by
single (') and double (") primes, the condition is that

v/‘;(T:P:x’) =:u:;(T3P’x”) (“i 1a23-~-ac)3 (9'1)

where x’ and x” are the compositions of the two phases. However, since the phases are both
associated with the liquid state of the reference substance, the potential for any component
is the same function of temperature, pressure and composition in either phase, and the
condition may be written simply as

U T, Pyx") = p (T, P,x") (a=1,2,...,¢), (9-2)

where the p,(7T, P, x) are given by equations (7-23), with the reference functions as pro-
perties of the liquid state. We shall not write down the explicit form of these equations,
which may be easily obtained by substitution, but merely note that the equivalent con-
formal parameters f, and 4,, and also the starred parameters f; and £.%, will have different
values in each phase, since they are, in general, functions of composition. The generalization
of the condition (9-2) to more than two phases is obvious.

24-2
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(6) Liquid-vapour phase equilibrium: azeotropy
In the case of the equilibrium between a liquid mixture and its vapour, the potentials
are different functions of temperature, pressure and composition in the two phases, since
in one they are associated with the liquid state of the reference substance, and in the other
with the gaseous state. The condition for equilibrium is therefore that

, ,ug(T,P,xG) =,uf;(T,P,xL) (a: 1,2,...,0), (9'3)
where the superscripts denote the gas (G) and liquid (L) phases. By substituting for the
configurational chemical potentials from (7-23), we can express this in the form

—AG, = RTIn (x$/x%) —|—2A[U% xg( S —1) [f1+2A[7 ﬂE xﬂ/c;’:ﬂ/f] (@=1,2,..., c)(,9 9
where A subtracts the value of a function in the liquid phase from that in the gas phase;
for example, putting /¢ = f(x°), etc.,
AG(T,P) = GS¢(T,P)—G=(T,P)

= fCGo(T|f ¢, PROIf ) —f*Go( T|f* PR“[f*) —RTIn (K[R¥).  (95)
It is evident from equation (9-4) that in this theory the liquid-vapour equilibrium depends
on the functions G§(7, P) and G§(7, P), and their first derivatives with respect to tem-
perature and pressure. Now the liquid-vapour coexistence curve for the referencesubstance,

which is the boundary between those temperatures and pressures for which the liquid is
the stable state and those for which the gas is stable, is given by
AG,(T, P) = G§(T, P)—G¥(T,P) —o. (9-6)

It can be seen, therefore, that in order to calculate the compositions of the coexistent liquid
and vapour phases of the mixture from the properties of the reference substance, it will in
general be necessary to know not only the values of G§ and Gy for the stable phases, but
also for certain metastable phases; that is, for certain temperature and pressure ranges of
the supersaturated vapour and superheated liquid forms of the reference substance, which
will be determined by extreme values of the parameters f, and £, for the coexistent phases.
This is, of course, a disadvantage of the theory from a practical point of view.

The case in which the mixture exhibits azeotropy is particularly simple and interesting,
and we shall examine it in some detail. For azeotropic states of the system, or in other
words states of uniform composition (xS = x5 = x, for all «), the equations (9-4) become

~AG, = U S (5= + 20,V Sxhlf (1=1,2,...,0), (9-7)

where the suffix a has been attached to A to indicate that the compositions of the two phases
are the same, and therefore that the parameters f and # are identical in the liquid and gas

functions; for example A,G(T, P) — fAG,(TIf, Ph/f), (9-8)

where AG((T, P) is given by (9-6). From these equations we can deduce a very simple
feature of the azeotropic line (that is, the relations between the temperature, pressure and
composition of the azeotropic states). For by multiplying each equation by the appropriate
mole fraction and adding the resulting expressions together, we find, with the help of

(7-16) and (7-21), that A,G(T,P) = 0. (9-9)
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According to equation (9-8) this is the liquid-vapour coexistence curve: of the equivalent
substance for the azeotropic composition x¢; and therefore the azeotropic line ‘corresponds’
to the coexistence curve of the reference substance, (9-6), in the sense that it can be derived
from it by means of the scale factors f(x%) and 4(x¢) after the manner of the law of corre-
sponding states.

The other ¢—1 independent equations in addition to (9-9) may be regarded as deter-
mining the azeotropic composition; they can be chosen to be any ¢—1 of the equations

AU 3 5[ =) +PAV S5k = 0 (0= 1,2,...,0), (9-10)
A B

where we have replaced A, 7" by PA, V, in accordance with equation (7-8). These equations
are suitable for determining the conditions on the parameters for azeotropy to occur, and
we shall now proceed to consider this aspect of the theory.

In general the condition for azeotrope formation is that the equations (9-10) have a
physically significant solution; that is, one for which all the mole fractions x, lie between
0 and 1. For binary mixtures, which are the only type we shall consider here, only one of the
equations (9-10) is independent. By subtracting the two dependent equations from one
another and rearranging the relation obtained, we get

(U —/8) + (Rt —4%,) (PAV/AU), _
(2f 5 —S1—/3%) + (2kE, — kY — k%) (PAV/AU),
This somewhat formidable equation can be thrown into a simpler form by means of the
linear combination relations satisfied by the Lennard-Jones potential functions. To derive

this form, we note first of all that the Lennard-]Jones intermolecular ‘virial’ function, v(r),
defined by equation (7-11), is functionally related to the energy function, u(r), by the

cquation o(r) = —Au(rfp), (9-12)

1—2x, = (9-11)

where A and p are positive constants given by

Apr=n and Ap™=m. (9-13)
By using equation (9:12) in equation (8-2) we find that &%, can be expressed in the form
k¥p = —%uaﬂ(rf/p)ug“o (e, f=1,2,...,¢). (9-14)
Now it follows directly from equation (4-1) that if @ and b are any two constants, then
u(r) +au(r/b) = Au(r/B), (9-15)
where 4 = (14abm)r=m (1 +ab")"”/<""'"),} (9-16)
and B = [(1+ab")/(1+ ab™)]/e=—m),

Therefore, by equations (8-1) and (9-14), if C'is any number,

3AC
S+ CRgp = aagr2) = ey (0210) | [t

— Au,y(rF(B) fuby, (9:17)
_ (1—3C/m\Yw—m )
where B = (1_—30/71) . (9-18)


http://rsta.royalsocietypublishing.org/

A A

JA '\

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

196 W. B. BROWN ON THE

(Bisreal aslong as C'is greater than $n, or less than $m.):- Hence, replacing C by (PAV/AU),,
we can write (9-11) in the form

11(7:‘/3) — 22(’3‘/3) .
L2, = g ) unH1B) s (F1B) (9:19)

we observe that since 0<(PAV/AU),<1 and n>m>3,

B must be less than 1, and therefore 7}/B is greater than r}.

If the average molecular size ¥ was independent of composition, the necessary and
sufficient condition for azeotrope formation would be that the modulus of the right-hand
side of equation (9-19) was less than unity, or

(uyg—uyy) (#3—yy) >0 for r=r1¥B. (9-20)

intermolecular energy
=]

Ficure 3. Variation of the intermolecular energy functions of a binary
mixture, #,,, %, and uy,, with intermolecular distance 7.

This condition has a simple interpretation on the intermolecular energy diagram, figure 3.
It means that at distance /B the ‘mixed’ potential function #,, must lie outside the energy
interval u;; to #,,. The molecular size ¥ is only independent of composition for isochoric
mixtdres, when (9-20) reduces accurately to

(frz—S11) (f12—S22) >0. (9-21)

Since the f,, are true constants, such a mixture will either form an azeotrope of fixed
composition at all temperatures (absolute azeotropy), or not at all. In particular, isochoric
mixtures satisfying the geometric mean hypothesis, /% = f;, f22, can never form an azeotrope.
In general 7* depends on composition, and usually varies between 7§ and r%,. A sufficient,
but not necessary condition for azeotropy in most cases is therefore that (9-20) holds for
r equal to 7§ /B, and r%/B,, where B, and B, are the values of B for the components. This is
true in the case illustrated in figure 3, where (9-20) only breaks down for r less than 7/,
where u,;,(r) and u,,(r) have crossed over.

A more thorough analysis of equation (9-19) will not be attempted here, as it requires
a careful classification of mixtures on the basis of the relative values of the conformal and
Lennard-Jones constants of the components. However, it may be mentioned that if the


http://rsta.royalsocietypublishing.org/

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STATISTICAL THERMODYNAMICS OF MIXTURES. I 197

usually slight composition dependence of B is ignored, (9:19) can be reduced to a cubic
equation in x,. The condition that one of the roots lies between 0 and 1 then prov1des a
necessary and sufficient condition on the parameters for azeotrope formation.

The ratio C, equal to (PAV/AU),, occurring in equations (9-11) and (9-19), is related to
the slope of the vapour-pressure curve of the equivalent substance for composition x4,
which is the same as that of the projection of the azeotropic line onto the T, P plane (see
Prigogine & Defay 1954). This relation can be deduced from equations (9-9) and (9-10)

and is (}/}Al{/)a _ (g }ET - 1. (9-22)

For a pure substance the derivative dIn P/dIn T is of the order of 10 at the critical point,
where it is a minimum, so that PAV/AU will be about % or less. This ratio will be approxi-
mately proportional to the absolute temperature, since '

PAV~RT and AU ~constant.

This means that although the azeotropic composition is fixed for isochoric mixtures, it
will in general vary with temperature for mixtures of molecules of different size.

When the conformal parameters f,; and 4,4 are all close to unity, equation (9-11) can
‘be reduced to the form derived by Cook & Longuet-Higgins (1951) from the first-order
theory of conformal solutions.

This concludes our discussion of azeotropy,} and phase equilibria in general. We shall
now go on to consider the reasons for the breakdown in stability leading to phase separation
in mixtures, and the two types of critical phase associated with the equilibria discussed in
parts (a) and () of this section.

10. STABILITY AND CRITICAL PHASES

It is interesting to show, from first principles, the possibility of three distinct kinds of
phase separation in the liquid mixtures under discussion: the liquid-liquid, the liquid-
vapour, and the liquid-solid. This has not been shown previously for any theory of mixtures,
and is only possible with the present theory because no assumptions have been made
which limit consideration to a particular phase. The following analysis is confined to
binary mixtures, but could be extended to a greater number of components without
difficulty.

In order to examine the possible’types of phase separation in binary mixtures we require
an expression for the coefficient (02G/dx?), », which determines the material stability
(stability with respect to diffusion) of a single phase. This coefficient is positive for stable
phases, vanishes in cases of limiting stability, such as a critical phase, and is negative for
unstable phases. To obtain an expression for it we start from equation (5-6) for the molar
configurational Gibbs function, which may be written

G(T, P,x) = G(T,P)+RT 3 x,Inx, (10-1)

1 Expressions for the derivative (82AG/0x?) determining the ‘sign’ of the azeotropy of a mixture may be
readily obtained from the equations of the next section.
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where G,(T, P) is the molar configurational Gibbs function for the equivalent substance for
composition x, given by (5-5). The coefficient determining the material stability of a binary
mixture is then

’G RT | 0°G,

F Ry ey o (102)

we observe that for instability the derivative 92G,/dx? must be negative, and less than the
ideal term RT/x(1—x). Since G, depends on x only through the conformal parameters
J. and £, its second derivative has the form

7‘«;— 2 Gr-R Gy [(f2)2G -2 f) ) G+ ()2 Gyl (10-3)

- where the primes denote differentiation with respect to x, and the quantities Gy, Gy, etc.,
are defined as follows:

Gy = (%?) = Ulf,

(10-4)

G, — (‘;f) (PV—RT)/h;

92 %G
Gy (af = (75 3T+ 2TP Jp P 0Pc)/f2
- (TC _2PTVa+P2Vl<)/fx,

=), =~ (TP 53p+ P3) [ b | (10:5)
—_— (PTVa—-PzVK)[fx o>

6= (39) - (ere ) s
— (RT—P2Vk)JR2. )

In these expressions U, V and C, are the molar configurational energy, the molar volume
and the molar configurational isobaric heat capacity, « and « are the thermal expansivity
and isothermal compressibility, and all functions are properties of the equivalent substance
for composition x at temperature 7" and pressure P. The derivatives f}, 4, etc., may be
obtained from the defining relations of § 4. Choosing x to be the mole fraction of the second
component we find that

A=Y o e e,

o, (10-6)
B= g =~ [t (25— DBl AL
" 02 x ’
S =55 = =2+ T AR,
” (10-7)

= = — 2t lf— (5 1) ()b —2f KL

52
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where efo = 2f 5 — 1 — /2%
512 = 2kfy—kfi— k¥, (10-8)
12 ‘“.fll fZZ:
12 = ku —kzz-

In deriving these formulae we have made use of the following relations, which may be
obtained from (8-1) and (8-2):

a.fdﬂ ( x/’l ) k“ﬂ’ ( )
’ 10-9
agf” — — (5 1) Chth) Ry (i) £

For the present it is sufficient to appreciate that f;, f;, etc., depend only on the composition,
and involve parameter differences in such a way that they vanish for a mixture of isotopic
components.

We are now ready to consider the dlﬁ'erent ways in which material instability or phase
separation can arise. In the first place, we see from the equations (10-5) defining G, Gy,
and G, that these functions are indefinitely large along the liquid-vapour and liquid-
solid coexistence curves of the equivalent substance. Examination of the quadratic form
in brackets on the right-hand side of equation (10-3) reveals that it is always indefinitely
large and negative under these conditions, and consequently 9%G,/dx? will be large and
negative along these coexistence curves. This potential instability extends over the whole
composition range of the mixture, since it is always possible to make — (9%G,/dx?) greater
than the ideal term of equation (10-2), no matter what the value of x. In the limits when x
goes to 0 or 1, the instability is evidently associated with the phase changes from liquid to
vapour and from liquid to solid in the pure components. Every mixture will therefore
exhibit these phase changes in the vicinity of the corresponding transitions for the pure
components.

Apart from these universal types of phase separation, it is evidently possible for 92G,/dx?
to be negative at temperatures between the melting and boiling points of the equivalent
substance. For example, even if the components have similar molecules so that the ( f;)?
(f7h.) and (A.)? terms are small, when f" is positive and of sufficient magnitude, then since
Gis negative at ordinary pressures, it is possible for — (92G,/dx?) to be greater than the ideal
term of equation (10-2). We note, however, that this type of instability does not extend over
the whole composition range; in particular, it can never exist for the pure components,
since 902G, /dx? will always be finite, while the positive ideal term R7T/x(1—x) can be made
indefinitely large by letting x approach 0 or 1. This instability therefore corresponds to a
separation of the mixture into two coexistent liquid phases; it is evidently dependent on
the sign and magnitude of the parameter differences, and will therefore be confined to
a certain class of mixtures.

Having thus shown qualitatively how the different kinds of phase separation in liquids
can arise, we will now consider some further aspects of the phenomena.

1 The sign of the quadratic form follows from the stability conditions for a pure substance, which demand

that (¢*GJoT?) <0 and (2GoT?) (2°GJoP?) > (8°G[o ToP)>.

25 VoL. 250. A.


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

200 : W. B. BROWN ON THE

(a) Partial and critical miscibility

We shall first examine in more detail the conditions for liquid-liquid immiscibility at
ordinary pressures, and the nature of the corresponding critical solution points. For this
purpose we can neglect all the terms involving the pressure in equation (10-4), and use the
approximate equation

2 : ,

% = RT[1/x(1—x) + (/) — (lafh) — (S If) 2 Col R+ (i f) U, (10-10)
where the configurational functions U and C, refer to the mixture or corresponding equi-
valent substance. In order to discuss the nature of a critical solution point, we need an
expression for the coefficient d2H/dx?%, which is negative at an upper critical solution point
and positive at a lower one (see Prigogine & Defay 1954). From equation (10-10) we find
by differentiation that

2
=10 (16 0) + (112 T(5F) (1011)

An examination of equation (10-10), bearing in mind that Uis negative and C, is positive,
reveals two possible reasons for material instability leading to liquid-liquid phase separation:

(i) If we suppose that the components are roughly similar, then (4;/A,) and (f;[f,) will
be small compared with 1/#(1—x) (which has a minimum value of 4), and the factor in
brackets in equation (10-10) will be positive. Instability is then possible if f;" is positive,
and since it follows from equation (10-11) that d2H/dx? is negative in this case, phase
separation will terminate at an upper critical solution point. This is the reason for the kind
of instability usually encountered in practice with non-polar mixtures. It can be seen from
equations (10-7) and (10-6) that f,” will be positive if ¢}, is negative or if | ¢¥ | is large.
Immiscibility caused by the former can be interpreted as primarily an energy effect, while
that caused by the latter is primarily due to differences in molecular size.

(it) Ifthe components differ widely in their critical constantst and if the configurational
heat capacity of the equivalent substance increases strongly as the temperature is lowered,
then the coefficient of R7 in equation (10-10) may be negative at low temperatures. If

+ is positive, the situation is not qualitatively different from that discussed in (i) above.
On the other hand if /" is negative there is the possibility of a closed solubility curve with
upper and lower critical solution points; this can be verified by considering the sign of
02H|0x? at high and at low temperatures. However, such behaviour is unlikely to be found
with mixtures of spherical molecules for two reasons. First, for isochoric mixtures, f; is
equal to 2(f}; -+ —2f;5), Which is probably always positive for mixtures of actual non-
polar substances, and it can be seen from equation (10-7) that the effect of differences in
molecular size is to increase the value of f;. Secondly, it seems unlikely that the con-
figurational heat capacity of a substance composed of spherical molecules could increase
strongly as the temperature is lowered; for example, the isobaric configurational heat
capacity of liquid argon decreases as the temperature is lowered. We conclude that although
it appears theoretically possible for mixtures of spherical molecules to exhibit a lower

1 Since deviations from random mixing will be important if the components differ widely, the present
treatment is not strictly adequate to deal with this second possibility.


http://rsta.royalsocietypublishing.org/

/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

STATISTICAL THERMODYNAMICS OF MIXTURES. I 201

consolute temperature, such behaviour is unlikely to be found in practice. Actual mixtures
which possess closed solubility curves at atmospheric pressure always appear to contain
polar components. It is of interest, however, to note the existence of a class of liquid mix-
tures exhibiting lower consolute points at elevated pressures, to which Klinkenberg (1953)
has drawn attention, in which the components have widely differing critical temperatures.
The simplest example is ethane + ethanol, but others are known involving only slightly polar
components, and even, apparently, two non-polar components.

Before leaving the subject of partial miscibility, it should be emphasized that the treat-
ment given here assumes random mixing of the molecules, and that this assumption will,
in general, be a poor one at temperatures as low as the critical mixing temperature of a
mixture. Deviations from random mixing will be examined in part IT.

(b) Liquid-vapour critical phases
We now turn to consider briefly the liquid-vapour critical phases or plait points of mix-
tures, in order to draw attention to the limited sense in which the mixtures being discussed
obey the law of corresponding states. This is necessary in case an uncritical attitude leads
one to the erroneous conclusion that the critical constants 7%, V¢ and P° of a mixture having
conformal parameters f, and 4, are related to those of the reference substance, 7§, V§ and
P§, by the simple equations

Te=fTs, Ve=h"Vs and P°=(f/h,)P§. (10-12)

In §5 it was shown that a random mixture of Lennard-Jones molecules must obey the
same reduced equation of state as the reference substance, in the sense that if (5-7) is the
equation of state of the reference substance, then that of the mixture is (5-8). But not all
the states of the mixture corresponding to actual states of the reference substance are
necessarily stable. This is because phase separation in pure substances is determined by
their limiting mechanical stability, while that in mixtures is determined by the breakdown
of material stability, which always limits the extent of the single phase region more than the
breakdown of the mechanical stability of the mixture (see Prigogine & Defay 1954).

The plait-point curve of the mixture is given by the solution of the equations for critical

material stability,
G_ _RT &G,
0x2  x(l—x)  dx* 7

#G _RT(2x—1)  #G,

dx®  x2(1—x)? T

(10-13)

= 0.

On the other hand, the critical point of the equivalent substance is given by the conditions
for critical mechanical stability, which leads to the equations

3G,
2 °
| G (10-14)
and ‘ —5;3- = +00;

these equations have the simple solution (10-12) for the critical constants 7%, V¢ and P¢ of
the equivalent substance. It is clear from equations (10-13) and (10-14) that the plait-

25-2
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point curve of the mixture can never coincide with the critical-point curve for the various
equivalent substances, except in the limiting cases of the pure components. In some recent
papers (Cook & Longuet-Higgins 1951; Rowlinson & Sutton 19554) it is assumed that in
a first-order perturbation treatment it is legitimate to identify these two curves. This
assumption requires further justification, as the authors of these papers were aware. How-
ever, for closely similar components, equations (10-12) are no doubt approximations to
the plait points of the mixtures, and we may note in passing that the temperature factor
f.isnot solely an energy parameter, as for a pure substance, since it involves both the energy
parameters f,; and the size parameters g,,; similarly, both sorts of parameter are involved
in k,.

The solution of equations (10-13) is not a simple matter in the general case, as it depends
on the behaviour of the reference substance in the vicinity of its crltlcal phase. Itis hoped
to discuss this problem in detail in a later paper.

11. TAYLOR-SERIES EXPANSIONS OF THERMODYNAMIC FUNGTIONS

In this section we shall derive the Taylor-series expansion of the Gibbs function for a
random mixture of any number of kinds of Lennard-Jones molecules, in powers and pro-
ducts of various conformal parameter differences up to the second order. This expansion
will then be used to discuss the mixing properties of a special class of binary mixtures in
detail.

The expansion of the molar configurational Gibbs function G, given by equation (5-6),
in powers and products of §f, = (f,—1) and 3/z (h,— 1) about that of an isotopic reference
mixture of the same composition, GY, is '

G(T, P, x) = G°(T, P, x) + (&) Gro+ (8h,) Gio+3(8,)* G
+ (8f,0h,) Gno+$(0,)% Gapo+ O(8%), (11°1)
where the functions G, etc., are related to those of equations (10-5) and (10-6), but refer

to the reference substance and not to an equivalent substance. They are independent of
composition, and are given by the following formulae:

G
G =(35), = PV—ET,

v

92
foO = (gf—g)o = TCP0+2PT%%—P2%K0> (11’2)

%G
Gino = (W)o = Pyky—PT V0,

32
G, — (5722)0 — RT—Px,

The configurational Gibbs function of the isotopic reference mixture is given by the
equation, similar to (10-2),

G(T,P,x) = Gy(T,P) +RT 3 x,Inx,. (11-3)

J
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In these expressions, G,, U, V; and Cp, are the molar configurational Gibbs function, the
molar configurational energy, the molar volume and the molar isobaric configurational
heat capacity, a, and k, are the thermal expansivity and isothermal compressibility, and
all functions are properties of the reference substance at temperature 7" and pressure P.
For convenience the suffix zero, indicating a property of the reference substance, will
henceforth be omitted from the functions G, etc., of equations (11-2) ; care must therefore
be taken to avoid confusing them with the functions G, etc., of the last section, which differ
in belonging to an equivalent substance.

The parameters f, and 4, defined by equations (4-9) and (4-10), may be expanded in
powers and products of the differences df,; = (f,5—1) and dk,5 = (k,5—1) as follows:

o= 33 nur¥or g 3 S rumpp Ty (5 3 2umphes)? +0(8), (11-4)

=3 3w xpdhgt 33, xﬂ[a/zaﬂmﬁ(“m mER=0) oz |

(5 3 mplhg) (53 5arplfe) — (g

When these expressions are substituted into the series (11-1), we find that to the second
order in df,; and kg,

G=G"+G,3 gxaxﬂdeﬂ—l—Gh g‘gxaxﬂakaﬁ%cff(g ;xaxﬂ(?f“ )2

+Gh§ %xaxﬂafaﬂ%aﬂ‘l‘ (th_Gh) (g ;xaxﬁ‘sfaﬂ) (% ;xaxﬂakzxﬂ)

)(zzx 3,0h,5)2+0(39). (11-5)

1 n-+ m
+-2-[G,,,,- (_51’ _1) G,+ %Gf] (33 wapdhy)?

+_c1g|:(n_|;;m )G’h———G:IZZx %503 . (11-6)

The following points should be noticed about this expansion:
(i) To the first order in df,,; and dk,, the expansion is

G=G+Uy 3 S wyxplfyyt (Pl —RT) 3 3 5usipdhy (11-7)

This is identical with the equation derived and used by Longuet-Higgins in his first-order
theory of conformal solutions (1951), and does not depend in any way on the Lennard-
Jones form of the potential energy. We note in passing that the first-order change in the
Gibbs free energy due to changes of molecular size is small compared with that due to
changes in the parameters f,,.

(ii) The coeflicient of the second-order terms in df, 4 likewise does not depend on the form
of the intermolecular potential. In fact it is evident from § 4 that for isochoric mixtures the
general equation for the Gibbs function does not depend on the form of the intermolecular
potential.

(iii) The last two terms of the second order in d4,; have coeflicients depending on the
Lennard-Jones indices 7z and m. Furthermore, it can be seen that the summation factors in
these terms are positive, and that the second, which is the larger, has a coefficient which is
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effectively given by —$nmU,. This quantity will be large and positive for the usual values
of nand m (i.e. n = 8 to 14, m = 6). The second-order change in the Gibbs free energy due
to differences in molecular size is therefore always large and positive.

This last point introduces one of the most important results of this treatment, since it
means that small differences in molecular size are sufficient to account for considerable
deviations from ideality in mixtures. This is in agreement with intuition, although such
deviations have too often been attributed entirely to first-order energy terms. A similar
conclusion has been reached by Prigogine & Bellemans (1953), but these authors un-
necessarily employ the cell model for the liquid state. The present treatment makes no such

“assumption, and therefore places this result on a more satisfactory basis.

(a) Comparison with rigorous expansion

It is relevant to recall here that it is possible to expand the Gibbs function of a conformal
mixture directly in powers and products of the differences df,,; and 8%, without assuming
random mixing, or postulating the Lennard-Jones potential (Brown & Longuet-Higgins
1951). To the second order this expansion has the form (Brown 1953)

G=G"+ GfZ Zxdxﬂaf‘,cﬂ—#Gh Z zxaxﬂﬁh“/,
‘Z’Zix x,et?fa,erlG}%?ZZZx %%y up ey +ACH(Z Zx %50fop)”
‘”sz %50/ 50h, 5+ “”ZEEx %%, 0f 5 0hy,
+fo’h’(2 Zx %p¥ap) (2 Ex xpaﬁa,g)Jr%G‘”ZZxapr‘ﬁip

hh Z % 2 xaxﬂxy(?}luﬂakay_‘_? (4)<2 z X xﬂa/zzxﬂ) (11'8)
@« fy
In this equation the functions G2, etc., are non-thermodynamic properties of the reference
SubStanCC, such that G(z) + G(g) + G}‘}) — fo’
GY+GR+GH = G, (11-9)

G+ GY+GH = G,

The non-thermodynamic parts of these functions are given by statistical formulae which
can be reduced to integrals over pair, triplet and quadruplet configurational distribution
functions; in fact the set G@, G and G are the contributions to G from groups of two,
three and four molecules, and the same is true of the other two sets of functions (see § 7 of
part IT). The composition dependence of the various terms involving these functions is
evidently in keeping with this interpretation; for example, the term with the coefficient
G is cubic in the mole fractions.

This general and direct expansion makes it clear that the assumption of random mixing
is only correct to the first-order terms in Jf,, and dk,,. The approximate thermodynamic
forms implied by the random-mixing approximation for the non-thermodynamic functions
G@, etc., can be readily obtained by comparing the two expansions (11-6) and (11-8); we
note that these forms are such that the relations (11-9) are satisfied. The general expansion
also enables an estimate to be made of the magnitude of the second-order terms due to
molecular ordering, but as a more powerful method of examining this problem will be
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given in part II, such an estimate will not be undertaken here. These non-random or
ordering terms are, of course, all negative, since the molecules will distribute themselves
in such a way as to minimize the free energy. This means, for instance, that equation (11-6)
over-emphasizes the effect of differences in molecular size.

(b) Excess Gibbs free energy of mixing

We shall now use equation (11:6) to obtain the Taylor-series expansion of the excess
molar Gibbs function of mixing, given by equation (6-2). For this purpose we require the
expanded forms of the molar Gibbs functions for the pure components. For component «
we have

Goc = GO + Gf(@faa) + Gh (3hoca) + %fo(%oc) 2 + th(é:f;xoc 8houx) + %th(shaoc) 2 + 0(83) . (1 11 O)

The expansion of GF is now obtained by substituting from equations (11-6) and (11-10)
into (6-2). This enormous expression can be simplified by introducing the (constant)
parameter differences

Cup = 2faﬂ ~faa —fp,g,
Sup = 2kaﬂ——haa—lzﬁﬂ,
0&/9 =f ao _f;?ﬂa

Pap = P lgpy

(,f=1,2,...,¢), (11-11)

and by breaking the equation up into terms of different order; that is, we put
GE = WGE L OGE .. (11-12)

"The terms of the first order in df,; and dk,, then take the simple form, quadratic in the mole

fractions,
WGE = U, 3 3 x4, %5¢,5+(PVy—RT) 3 3 %, %45,4 (11-13)
a>p B

a>

which is the equation derived by Longuet-Higgins (who uses the symbol d,, for our e,).
We see that this first-order expression does not depend on the absolute values of the con-
formal parameters f,,; and £,4, but only on the combinations ¢,; and s,, given by (11-11).
However, as might be expected, the second-order contribution, @GE, does involve the
absolute values of the parameters. We shall not quote the general expression obtained for
@GE for a mixture of ¢ components since, unlike that for the Gibbs function itself, it cannot
be easily inferpreted. For a binary mixture we find, omitting the suffixes 1 and 2 from the
parameters ¢,,, etc.,

OGE = Jx(1—2) {—[0°Gy+208(G—3G)) +6%(Grn—3Z)]
+ 162Gyt 2e5(Gpy+Gp) + 52 (Gt Zyy) 1+ (1 —22) [e0G -+ (ed +350) (Gp— G)
+5¢(Gn—Zpn) 1 — (1 — 22)? [2G 1+ 265(Gpy — Gy) + %G~ Zy) 1}, (11-14)
where x is the mole fraction of the second component, and the reference substance has
h that
been chosen s0 that  J(futf) =1 and  §(h+hag) = 1;

if the reference substance is arbitrary, then the following terms must be added to (11-14):

3(¢Grt35Gp) 0(f11+S22) +3(eGry+5Gys) 8y +hyy). (11-15)
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The function denoted by Z,,, which is the large positive quantity connected with the
second-order size terms, is given by

n+m n

- (”*?:’” )(PV _RT)-""y (11-16)

it is the only function in equation (11-14) which depcnds on the Lennard-Jones form of
the potential.

The second-order excess Gibbs function inevitably contains a large number of terms;
we note that the composition dependence is no longer quadratic or symmetrical, and that
the five thermodynamic functions of the reference substance defined in (11-2) are involved.
The general expressions for the latter can be simplified for liquids under low pressure by
neglecting PV, terms compared with RT, U, and 7C,,, as in equation (10-9). The approxi-
mate formulae are

G = []0, fo = TCPO’

G ==L | =", (11-17)

Z,, = — (’”?:’”—1) RT-"3'U,, Gy, =RT.

From the signs and approximate magnitudes of these functions it is possible to appreciate
the effect of the various parameter differences ¢,,, 5, 0;, and ¢,, on the excess Gibbs free
energy of mixing. For this purpose we shall put z and m equal to 12 and 6, and consider the

~expression obtained for an equimolar mixture, which is

C5(x = 3) = HeUy—sRT+}[62TCpy+ O$RT — $2(4U, + 3R T)]
—1[e2TCpy+2esRT+452(2U, +RT)]}. (11-18)

The following points about this equation are of interest:

(i) Mixtures in which ¢;, and s, vanish are not ideal, but show a positive deviation from
Raoult’s law. The condition for the ideality of isochoric mixtures derived from the theory
of strictly regular solutions, namely that ¢, is zero, is therefore inadequate. The only truly
ideal solution is an isotopic one. '

(i) Differences between the critical constants of the two components always increase
the excess Gibbs free energy, which is particularly sensitive to differences in size, owing to
the large positive coefficient of ¢2. These effects are in full agreement with physical intuition.

(iii) The second-order terms due to deviations, ¢;,, of the intercomponent energy para-
meter from the arithmetic mean of those of the components causes a decrease in GZ, while
the corresponding size difference, s,, causes an increase. The latter difference is not likely
to be important, as it is difficult to imagine that g;, deviates very much from $(g;; + gz,)-

The expanded forms of the derived excess functions of mixing, %, HE and V%, are most
easily obtained by differentiating that for GZ with respect to temperature and pressure.
We shall not quote the equations obtained, but merely point out that it is necessary to
differentiate the general expressions (11-13) and (11-14) with respect to pressure before
approximating after the manner of (11-17); this is because the pressure derivatives of
otherwise negligible terms, like PV, are large.
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(¢) Lorentz—Berthelot mixtures

For the remainder of this section we shall confine our attention to mixing effects in a
particular class of mixtures which cannot be treated by the first-order theory of conformal
solutions. This class is defined by the following relations between the intercomponent
conformal parameters f,; and g,, and those of the p_uré components @ and f:

fac%? zfococj;?ﬂ and 8ap = %(goca—*—gﬂﬂ) (“,ﬁ =12,.., C)' (11'19)

These relations are usually associated with the London dispersion forces between spheric-
ally symmetrical molecules, and are similar to those proposed many years ago between the
constants in van der Waals’s equation of state for mixtures. As the arithmetic and geometric
mean type of relations were first suggested by Lorentz (1881) and by Berthelot (1898), we
shall call conformal mixtures whose parameters satisfy the above relations Lorentz—Berthelot
muxtures.

~ There is some evidence that actual mixtures of non-polar substances approximate to
Lorentz—Berthelot mixtures:

(i) The experimental values for the second virial coeflicient in binary mixtures of non-
polar gases, such as carbon monoxide +hydrogen and methane+ethane, are in agreement
with those calculated from the critical constants using relations (11-19) (Guggenheim &
McGlashan 1951).

(ii) Prigogine and his colleagues (1953, 1956) have found that certain binary liquid
mixtures of strictly non-polar molecules of about the same size, for example, carbon tetra-
chloride and neo-pentane, show mixing effects whose signs contradict the first-order theory
of Longuet-Higgins, but which can be accounted for on a cell theory of solutions which
includes second-order terms and assumes the relations (11-19). This is, however, a very
indirect test of the latter.

It follows from the relations (11:19) that the otherwise arbitrary differences ¢,; and s,4
are given by

— 102 1064
Eaﬂ 1 oaﬁ"l_ ( )’} (11.20)

and Sus = — 4925+ 0(99).

By substituting these formulae into equations (11-13) and (11:14), and retaining only
terms of the second order, we find that for a binary mixture

where Goo = —Gr— 3G, ~ TCpp—1U,,
G0¢ = _‘ fh+%Gh = _%—RTﬁ (11‘22)

nm n+m-+1
G¢¢ = =G+ 53X, —3G, = T} Uy— (—6—‘“) RT;

the formulae on the extreme right-hand side involve the usual approximations for a liquid.
The excess Gibbs free energy of a Lorentz-Berthelot mixture is therefore quadratic in the
composition to the second order in # and ¢.

26 Vor. 250. A.
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The other excess functions can be obtained from (11-21) by differentiation. The excess
entropy is gIVen by  gr _ 11— x) [028,+ 20685+ 425541, (11-23)
: _(9Ge\ . 30?0)
where Sep = — (ﬁ)p ~ —1Cp— T(W K
‘ 9G,
Spg = — (T{?)P ~§R, 4 (11-24)
0G n+m-+1
S =~ (aT) T8 Cmt (S5 R,
The heat of mixing is therefore given by
HE = 1x(1—x) [02H06+20¢H0¢+¢2H¢¢], (11-25)
where Hyy — Gyt TSyp~ 3 TCrg— 3Ty — T2 (" f:;’?)
Hyy = Gyy+ TSps 0, (11-26)
nm
And the volume of mixing is
- aGao) ~_ l:g 2 2(@2‘9) :l
where Vso —(0P = Vol 8Tog+ (Ttg)2+ T 7)1’
dG,
Vs = (35), 2 Wld+ Taul, r (11:28)
dG,
b n+m—>5
Vo= (), =0 (75 ) +1 T

These formulae are strictly correct only at zero pressure. The values of the functions G,
etc., for orthobaric liquid argon at 90-67°K (vapour pressure 1-41 atm), have been cal-
culated from data quoted by Din (1956), and are given in table 1.

TaBLE 1. THERMODYNAMIC RANDOM-MIXING COEFFICIENTS FOR ORTHOBARIC
LIQUID ARGON AT 90-67°K

suffixes &9
coefficient units (66 ¢ ¢¢3
Gg,, J/mole +5628 —377 +20630
J/mole +3259 0 + 34020
TfS‘g,, J/mole . —2369 +377 +13390
Ve, ml./mole - 30-17 + 2673 + 1118

The first question of interest concerning these equations is whether they show the same
behaviour as those obtained for Lorentz—Berthelot mixtures from the cell theory of solutions.
The unexpected feature of the latter is that when the molecules are the same size, so that ¢

is zero, they predict that GE>0, HE>0 and VE<0
’ .
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This was shown to be possible according to the approximate equations of § 6 (a), and it
can be seen from the above equations that the more accurate analysis of this section confirms
this result as far as the second-order terms. We also observe that in this case the excess
entropy is negative.

It is now natural to inquire whether the excess functions for Lorentz—Berthelot mixtures
always have the same sign according to these equations, or for which mixtures they vanish,
if any. Since the excess functions are all simply binary quadratic forms in § and ¢, we have
merely to formulate the conditions for such forms to have real roots. For GF this condition

is evidently 35> Gio Gy | (11-29)
If this is true, then the values of # and ¢ for which GZ vanishes are related by
0Gpy = ¢ — Gy £/ (Gis— Gy Ggy)}- (11-30)

On examining the coeflicients Gy, etc., in the light of condition (11-29), we find that for
the mixtures under consideration, the excess Gibbs free energy and heat of mixing are
always positive, while the excess entropy and volume of mixing can have either sign. This
means that it is theoretically possible to have Lorentz—Berthelot mixtures which possess
large excess free energies and heats of mixing, but ideal entropies or zero volumes of mixing,
and possibly both. These possibilities are interesting with regard to actual mixtures of
non-polar substances, some of which exhibit this type of behaviour. It should be noticed
that in systems in which the quadratic composition coefficient for VZ or SZ vanishes, the
cubic terms (which are of the third order in # and ¢) could become dominant.

If the components differ greatly in their critical constants, they will not be completely
miscible at all temperatures, but will exhibit an upper critical solution point; this follows
generally for Lorentz—Berthelot mixtures from the treatment of partial miscibility in § 10 ().
From the second-order equation (11-21) for the excess Gibbs function we can deduce that
the critical mixing phase is equimolar in the components, and that its temperature is

given by 02Gyo+ 208Gy + $2G s = ART. - (11-81)

Alternatively, at a given temperature, we can regard equation (11-31) as the boundary
relation between the critical temperatures and volumes of components which are com-
pletely miscible, and those which are only partially miscible. If, as is usually the case,

G@g > 0, G¢¢ >0 and Gg¢ < G@ﬁ G¢¢,

then equation (11-31) represents an ellipse, first introduced by Scott (1956), which may be
called the miscibility ellipse.

To show clearly the qualitative behaviour of all possible Lorentz—Berthelot mixtures, it
is convenient to represent the components by points in a diagram having the conformal
energy parameters f,, as abscissae and the conformal size parameters 4,, as ordinates; this
is equivalent to plotting the critical volumes of the components against their critical tem-
peratures. If the position of one of the components in a binary mixture is fixed in this
conformal parameter diagram, say (f5s,%,), then the parameters of other components
(f115 £11) which are completely miscible with the first lie within the ellipse, given by equation
(11-31), whose centre is (fy9, /15,). The parameters of the other component for mixtures
for which S% and V7 are zero will lie on straight lines through ( f,,, ,,) given by equations

26-2
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similar to (11-30). This type of diagram has been drawn in figure 4 from the data for liquid
argon in table 1. If the point representing the first component (f;,,%;,) lies within the
ellipse, then the mixture will be homogeneous. Ifit lies in the shaded region between the
pair of lines VZ = 0, then the components will contract on mixing; if it lies outside this
region, expansion will occur. Similarly, if the first component lies in the shaded region
between the lines $¥ = 0, then the excess entropy of the mixture will be negative ; otherwise
it will be positive. As mentioned above, all Lorentz—Berthelot mixtures have positive excess
Gibbs free energies and heats of mixing. The four possible types of behaviour are therefore:

SE>0, VE>O0,
SE<0, VE>O,
SE>0, VE<OQ,
SE<0, VE<O.

GE>0, HE>0

IR D
TR
ATTAXIRXIEN
X ERRRRBREE
RSO
< 0/ QOO0
Y.

size parameter A
o
I

energy parameter, f

Ficure 4. Conformal parameter diagram for binary Lorentz—Berthelot mixtures with the para-
meters of component 2 fixed (f3y, Ay,), showing the miscibility ellipse, and the dependence of
the sign of §% and VZ on the parameters (f},, #,;) of the other component.

Of these possible types of behaviour, only the first and last have so far been found experi-
mentally with mixtures of roughly spherical and non-polar molecules. The first type, in
which all the excess properties are positive, is well known, and is shown, for example, by
mixtures of cyclohexane and carbon tetrachloride. Englert-Chwoles (1955) has reported
that the excess entropy of an equimolar mixture of neo-pentane and carbon tetrachloride is
negative, and at present this system provides the only known example of the last type. Both
the present theory and the cell theory predict that mixtures of carbon monoxide and
methane should have negative volumes and excess entropies of mixing (see § 12), but the
latter has not yet been confirmed experimentally.

12. COMPARISON OF THEORY WITH EXPERIMENT

There are comparatively few liquid mixtures to which the theory presented in this paper
could be applied with complete confidence. The only mixtures which can be assumed to
satisfy the premises of the theory with sufficient accuracy are those formed from substances
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accurately obeying the same reduced equation of state. Of the substances listed by Guggen-
heim (1945) as satisfying this condition, only the liquid mixtures formed from carbon
monoxide and methane have been studied with a view to obtaining the functions of mixing;
the comparison of theory with experiment will therefore be confined to this system.

However, before proceeding to describe the results of this comparison, it should be
mentioned that Prigogine and his colleagues (1953, 1956) have applied the equations of
the cell theory of solutions to a wider variety of binary liquid systems. The equations of the
present theory are similar to those of the cell theory, and agree with the latter in suggesting
that the major part of the mixing effects in most of the strictly non-polar solutions studied
(with the exception of those involving fluorocarbonst) can be accounted for by a theory
whose leading terms are of the second order in differences between molecular energy and
size parameters; for example, a theory assuming the Lorentz—Berthelot relations (11:19).
It does not seem worth while to apply the present theory in detail to the liquid mixtures
which have been carefully investigated at ordinary temperatures, such as benzene -+ cyclo-
hexane, since none of the molecules can be assumed to be spherical with any confidence,
and Rowlinson & Sutton (19556) have already shown that the mixing effects in such
solutions could be accounted for by attributing them mainly to deviations from central
interactions. It is sufficient to know that the bulk of the departures from ideality can be
accounted for simply by differences between the properties of the pure components. To
examine these departures in greater detail for mixtures containing substances such as carbon
tetrachloride, benzene, cyclohexane and the fluorocarbons, one requires a theory capable
of distinguishing between mixing effects due to differences between central forces, non-
central forces and forces which are not conformal.

The liquid system carbon monoxide 4 methane has recently been carefully studied by
Mathot, Staveley, Young & Parsonage (1956) at the triple-point temperature of methane,
90-67° K. They have measured the vapour pressures and densities of the liquid mixtures,
and derived the excess Gibbs free energy and the volume of mixing as functions of the com-
position. Their smoothed results are shown by the continuous lines in figures 7 and 8. In
principle, the calculation of the mixing properties of this system from the equations of
the present theory is straightforward. We assume tentatively that the Lorentz-Berthelot
relations are obeyed, and calculate the equivalent parameters f, and 4, as functions of the
" composition. From the properties of the chosen reference substance as functions of tem-
perature and pressure, we can then calculate the corresponding properties for the mixture
and the components by using the law of corresponding states. By subtracting these according
to the equations of § 6, we obtain the excess mixing properties as functions of comp051t10n at
a given temperature and pressure.

* Inpractice, however, there are a number of difficulties, the most 1mportant of Wthh is the
failure of carbon monoxide and methane to obey the law of corresponding states exactly.
For example, at a reduced temperature of 0-5, the reduced orthobaric volumes are 0-353
and 0-363 respectively, and the configurational isobaric heat capacities, which should also
be identical, are 39-5 and 28-7 J/mole respectively. Since methane obeys the same reduced
equation of state as argon, the failure is almost certainly due to non-central forces in carbon

T It seems likely that the fluorocarbons, and other perfluorocompounds, belong td a family of quasi-
conformal substances which is distinct from that of the hydrocarbons.
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monoxide. These deviations mean that the results of the calculations will depend on the
choice of the reference substance. Calculations have therefore been made using both
carbon monoxide and methane as the reference substance.

There is also a difficulty in calculating the excess mixing functions from the exact equa-
tions (6-2) to (6-5), since these involve the difference between two large quantities, and
this difference is usually only about 19, of the value of the quantities subtracted. Errors
due to interpolation, whether graphical or numerical, are thus magnified. The calculations
have therefore been made by representing the thermodynamic properties of the reference
substance by simple formulae over the required temperature range, and using these to
derive equations of the same type as those introduced in §6 (a). These equations involve
differences between conformal parameters, which can be calculated accurately, instead of
differences between thermodynamic functions. '

Throughout the calculations it is assumed that the functions involved are for the ortho-
baric reference liquid, since this corresponds more closely to the experiments from which the
excess mixing properties were obtained than the assumption of constant pressure. In any
case, the pressure dependence of the thermodynamic properties is small, because of the
low pressures and small pressure range involved, namely, 0 to 2-5 atm.

TABLE 2. CRITICAL CONSTANTS AND CONFORMAL PARAMETERS
FOR CARBON MONOXIDE AND METHANE

conformal parameters
crit. temp. crit. vol. ‘ A \
substance (°K) (ml./mole) energy, f size, h
carbon monoxide (1—1) 133-0 93-1 1-00000 1-00000
methane (2—2) 1911 99:0 1-43684 1-06337
(1-2) (159-4) (96-0) 1-19868 1-03136

The first step is to calculate the equivalent conformal parameters as functions of com-
position. The critical temperatures and volumes of carbon monoxide (1) and methane (2),
and the values of the conformal parameters f|,, #,;, etc., for carbon monoxide as the refer-
ence substance, are given in table 2. The values of f}, and %, have been calculated from the
Lorentz—Berthelot relations (11-19), namely,

Jio=J(firSas) and Ay = [$(Vhy+V )] (12-1)

Graphs of the equivalent parameters f and £ (equal to g3), calculated from equations (4-9)
and (4-10) for #» and m equal to 12 and 6, have been drawn against composition in figure 5.
It can be seen that they are very nearly linear in the mole fraction of methane. The devia-
tions from linearity, fZ and /%, and the various other excess conformal parameters required,
are drawn in figure 6; these excess parameters are defined by (6-9) and similar equations.

(a) Calculation of the heat and excess entropy of mixing

To within the experimental error of the existing thermodynamic measurements for
liquid carbon monoxide and liquid methane, the orthobaric molar configurational enthalpy
of either reference substance can be represented by the formula

HT)=H+(T-TYH +}(T-T)*H', (12-2)
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where T'is 90-67° K and H, H' and H" are constants. If we neglect the pressure dependence
of the enthalpy, then according to equation (6-4) the heat of mixing at temperature 7 is

given by , HE — AfE+C(L[f)", (12:3)
and similarly, according to (6-3), the excess entropy of mixing is given by

TSE = —BInEf+2C(1/f)E+RTInEh, (12-4)
" 1‘4'* ~
8
Q
g
S 13- -
g, fz
s
E
G 1o -
3
g
=
E L i
3
g ha;

10 T R
0 05 1

" mole fraction of methane, x

F1Gure 5. Variation of the conformal parameters of the equivalent substance, f, and 4,,
with composition for the system carbon monoxide + methane.
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FIGURE 6. Variation of the excess conformal parameters with composition
for the system carbon monoxide + methane.
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where A=H-TH +}T*H’,
B=TH —-T:H’, (12-5)
C—1T°H".
The excess Gibbs function of mixing can be found from the relation
GE = HE— TSE, (12-6)
100
)
¥s)
g
-
53]
© 50
- Of
°
&
-’
" R
g -0
FiGURE 7. Variation of the excess Gibbs function and entropy of mixing with mole fraction of
methane for the system carbon monoxide +methane at 90-67°K. , experimental results;
~———, calculated using carbon monoxide as reference substance; ----, calculated using

methane as reference substance.

The values of the configurational enthalpy of liquid carbon monoxide and its derivatives
with respect to temperature can be calculated from measurements of its heat of vaporization
and heat capacity (Clayton & Giauque 1932). This procedure requires the configurational
enthalpy of the saturated vapour, which can be estimated from calculated values of the
second virial coefficient and its temperature derivative. The values obtained for the
coefficients 4, B and C are as follows (units J/mole):

A=—-8680, B=3616, C=0.

The configurational enthalpy of liquid methane, and its derivatives with respect to tem-
perature, can be calculated in a similar fashion from measurements of its heat of vaporization
(Frank & Clusius 1939) and heat capacity (Clusius & Perlick 1934). The values obtained
for the coefficients 4, B and C, when reduced by the law of corresponding states to apply
to carbon monoxide, are as follows (units J/mole):

A=-7038, B=1716, C = 603.

The excess Gibbs free energies and entropies of mixing calculated from these sets of
figures are plotted against composition in figure 7 (broken curves), and compared with the
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smoothed experimental results for the excess Gibbs free energy (continuous curve); the
error in the latter is estimated to be within 1 9%,. The calculated values for the free energy of
random mixing should lie slightly above the true values for the slightly ordered mixture.
However, the two calculated curves for GF lie above and below the experimental curve,
and differ appreciably from one another, the difference being a measure of the deviation
of the two components from the law of corresponding states. In view of this deviation, the
agreement between theory and experiment must be regarded as satisfactory. We note that
the sense of the asymmetry of GF is correctly reproduced by the theory, although the dis-
placements of the calculated maxima towards carbon monoxide-rich mixtures are rather
less than that of the experimental curve ; however, this feature would probably be improved
if more extensive measurements for the heat capacities of the components were available.

The effects of molecular ordering on the excess free energy and entropy of mixing are
estimated in part II.

(8) Calculation of the volume of mixing
"The orthobaric molar volumes of liquid carbon monoxide and liquid methane can be
represented by the equation
VWT)=V+(T-T\V+HT-T2V'+§T-T)3V", (12-7)

within the temperature ranges required, namely, 63-10 to 90-67° K and 90-67 to 130-28°K
respectively. If we neglect the effect of the difference between the vapour pressure of the
mixture and that of the equivalent substance, then according to equation (6-5) and the
law of corresponding states, the volume of mixing obtained from orthobaric measurements
at temperature 7 is given by

VE = ah®+b(h[f)E+c(h[f?)E+d(h[f3)E, (12-8)
where a=V-TV +3T?V"-1T3P",
b=TV' —-T2V"+3T37",
¢ = §T2V"—-31T3pP",
d=3T37".
The values of the derivatives in equation (12-7) for liquid carbon monoxide can be
obtained from the density measurements of Mathias & Crommelin (1936), and those for
liquid methane from the density measurements quoted by Keyes (1928) and by the American

Petroleum Institute (1953). The coefficients defined by equations (12-9) have the following
values for carbon monoxide (units ml./mole):

(12-9)

a=1457, b=>5231, ¢=—5848, d=2883.

Those for methane, when reduced by the law of corresponding states to apply to carbon
monoxide, are (units ml./mole):

a=21-89, b=2756, ¢=—2651, d=1513.

The volumes of mixing calculated from equation (12-8) using these sets of coefficients are
plotted against composition in figure 8 (lower broken curves), and compared with the
smoothed experimental results (continuous curve). The calculated volumes of the random

27 Vor. 250. A.
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mixtures should be larger than those of the actual slightly ordered mixtures, but in fact
the volume of mixing curves calculated using carbon monoxide and methane as reference
substances are both lower than the experimental curve. This is simply due to the difference
between the reduced orthobaric volumes of the two components at the same reduced tem-
peratures. This difference is such that whichever component is used as the reference sub-
stance, the change of volume with temperature is greater than the molar volumes of the
pure components at 90-67° K imply. This suggests that we construct a hypothetical reference
substance whose orthobaric volume is the same as that of carbon monoxide at 90-67° K,
and reproduces the volume of methane at the corresponding temperature (63-10°K). The
second and third derivatives of the orthobaric volume with respect to temperature are

mole fraction of methane, x

0 05 1
] | 1 [ I | 1 B |
\ A
/7,
"0 1—\ \ /' '7/
n \\'z‘\ S
IS} N\ 7/
E 0= \ "X YA
] \ N S
—~ \ AN~ —e o/
R -0-3 \ - o/
\ . R4
-\ IR T /
~__-"
| -0-5L—
FiGurE 8. Variation of the volume of mixing with composition for the system carbon monoxide +
methane at 90-67°K. , experimental results; ————, calculated using carbon monoxide
as reference substance; ----, calculated using methane as reference substance; —:—-— , cal-

culated using constructed reference substance.

important, and can be calculated from data for argon (Din 1956) by using the law of
corresponding states. The values of the coefficients 4, b, ¢ and d obtained in this way are as
follows (units ml./mole):

a=2207, b=2959, c¢=—3003, d=15865.

The volume of mixing calculated from equation (12-8) using these figures is shown by the
upper broken curve in figure 8. We see that it is closer to the experimental curve than
the other calculated curves, and even lies slightly above it, in agreement with the qualita-
tive effects of randomizing the molecular distribution. However, too much weight cannot be
placed on the agreement of this calculation with experiment, since a numerical examination
reveals that an error in the value of the curvature of the volume-temperature curve for the
reference substance gives rise to an equal percentage error in the volume of mixing; the
calculations are therefore sensitive to slight errors in the experimental results for the
reference substance. It is interesting to note that the calculated curves are all asymmetric
in the same sense as the experimental curve (and actually to a greater degree). This asym-


http://rsta.royalsocietypublishing.org/

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STATISTICAL THERMODYNAMICS OF MIXTURES. I 217

metry is mainly due to the increasing curvature of the orthobaric volume: curve of any
reference substance with temperature, and would be less for mixtures whose components
differed less in their critical temperatures. It is not, therefore, an effect primarily due to
deviations from the law of corresponding states.

The method of constructing a reference substance which reproduces correctly certain
properties of the pure components can, of course, also be used in calculating the heat and
excess entropy of mixing. However, the calculations have not been presented, as the values
obtained for the excess free energy are much lower than the experimental figures. This
only serves to show that, even in this apparently simple case, a theory assuming spherical
- molecules is inadequate. Nevertheless, the rough agreement of theory and experiment
can be regarded as further evidence in favour of the Lorentz—Berthelot type of relations
between the intercomponent energy and size parameters. A more thorough comparison
of theory and experiment must await the measurement of the heat of mixing of this system,
and the extension of the present theory to slightly non-spherical molecules.

13. DiscussioN

The approach to the theory of simple mixtures presented in this paper has also been
recently proposed by Scott (1956), and only differs from that of Prigogine and his colleagues
(1956) in the recognition that the fundamental definition of random mixing renders the use
of the cell model for a liquid unnecessary. It should also be mentioned that the random-
mixing approximation introduced in § 3 has already been used by Salsburg & Kirkwood
(1953), although these authors confined its use to a theory based on the cell model. The
present approach therefore appears as the one towards which research in this field has been
leading during the last decade. Indeed, we may go further back and regard it as the proper
realization of the ideas with which Hildebrand created his semi-empirical theory of regular
solutions (see Hildebrand & Scott 1950). In this connexion it is interesting to note that in
his Spiers Memorial Lecture to the Faraday Society in 1953, Hildebrand re-defined a
regular solution as ‘one in which thermal agitation is sufficient to give practically complete
randomness’.

In spite of Hildebrand’s new molecular definition of a regular solution, it is not suggested
that the existing terminology be confused by referring to the mixtures treated here by this
name. It seems preferable to refer to them by the descriptive title ‘random mixtures of
Lennard-Jones molecules’, and to abbreviate this, when convenient, to ‘R.L.-J. mixtures’.
This terminology is supported by the conclusion which can be drawn from the appendix,
namely, that the rigorous application of the law of corresponding states to random mixtures
is confined to the Lennard-Jones form of the intermolecular energy function.

The restriction of a corresponding states type of treatment to mixtures of Lennard-Jones
molecules, while unfortunate, is probably not serious. It may well be true that, as Guggen-
heim (1953), for example, has suggested, the derivatives of the intermolecular energy are
not well reproduced by the Lennard-Jones function in the vicinity of the energy minimum.
However, we know from the theory of conformal solutions that the form of the potential-
energy function does not affect the first-order terms in the excess functions of mixing, and
it has been shown in § 10 that the form only appears in the higher-order size terms; the exact
shape of the potential is therefore probably only important for mixtures of molecules of

27-2
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very different size. How important it is evidently requires further investigation, but it
seems likely that in actual mixtures the deviations from random mixing, and from central
and conformal interaction, will be of much greater importance. This opinion is supported
by the results of § 12, where it appears that the relatively small deviations from the law of
corresponding states of such a simple molecule as carbon monoxide interfere seriously with
the calculation of the mixing effects with methane.

In the treatment presented above, the random-mixing approximation has been employed
on the grounds of its physical plausibility and mathematical simplicity. The validity of this
approximation will be examined in the second part of this paper.

'The author would like to thank Dr J. S. Rowlinson for many useful discussions during
the course of this work and in the preparation of the manuscript, and to thank Mr J. B.
McLeod of Oxford University for his solution of the mathematical problem in the appendix.
The authoris also grateful to Mr L. A. K. Staveley of Oxford University for communicating
the experimental results for the system carbon monoxide + methane, and to Dr F. Din of
the British Oxygen Company for permission to use his tables for argon before their publi-
cation. '

APPENDIX. ON THE FORM OF THE INTERMOLECULAR ENERGY FUNCTION IMPLIED BY THE
CONDITION THAT A RANDOM CONFORMAL MIXTURE OBEYS THE LAW OF CORRESPONDING
STATES

It is shown in § 3 that a random mixture is essentially equivalent to a single substance
whose intermolecular energy function is given by equation (3-4), or

@) = 3 3 xagtglr) (A1)

If the various intermolecular energy functions u,,(r) are conformal, then according to

(irt) we have W) = 3 Syt (A2)

where u(r) is the intermolecular energy function of a reference substance. The condition
that a random conformal mixture obeys the law of corresponding states for all compositions
is simply that (u(r)) is also conformal to (r), in the sense of equation (4-8); this condition
may therefore be expressed in the form

2 % %o %p fopt(r/up) =Julrlg) (0<r<00), (A3)

where fand g depend only on the positive numbers f, 4, g, and «,. This equation is evidently
a condition on the function #(r), and it is shown in §4 that it is satisfied by the Lennard-
Jones form (4-1). The question therefore arises: Are there any other functions u(r) which
satisfy condition (A 38), or is the Lennard-Jones form the only one? The most direct route
to an answer, and that which we shall adopt, is to regard condition (A 3) as a functional
equation for u(r), and to attempt to obtain the general solution.

We begin by reducing equation (A 38) to its simplest form, which is

u(r) +au(rb) = Au(rB) (0<r<o0), (Ad4)
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where 4 and B depend only on the real arbitrary parameters ¢ and 4 (0<<a<<00, 0<<b <00);
this equation follows from (A 4) by combining the terms of the latter two at a time. Next
we transform the equation by introducing the variable ¥ = Inr and putting ¢(x) = u(r),

so that it becomes $(x) 4 ag(x+p) — Ap(x+P) = 0, . (A5)

where p =1Inb and P =InB. The equation now has the form of a homogeneous linear
difference equation with constant coefficients. If p and P are commensurable, that is if
p = hi and P = hj where ¢ and j are integers, then the general solution is (Fort 1948)

43) = S0, (A6)

where the o,(x) are arbitrary functions of period %, and the ¢, are the roots of the auxiliary
equation

1 1-+att— AP = 0. (A7)
However, we are interested in the solution of equation (A 5) which is valid for all positive
values of @ and b, and therefore for the case in which p and P are incommensurable. It is
plausible to argue that in this case the period /& must be zero, so that equation (A 6) becomes

(x) = 2ot (A8)

where the ¢, and ¢, are absolute constants. It can be proved rigorously that this is in fact the
general solution of equation (A 5) under these conditions (McLeod 1956), but as the
analysis is rather long we shall not reproduce it here. Accepting this solution, it now follows
that, since the constants ¢, must be independent of a and &, the auxiliary equation (A7)
can be true for only two values of ¢, say ¢, and #,. Hence in equation (A 8) only ¢; and ¢,
can be non-zero, and the general solution is simply

B(x) =\ -+oyts. (A9)

By transforming back to the original variable and introducing the conditions for a physically
acceptable intermolecular energy function, namely,

u(0) =0, u(0)=c0 and u(¢) =0 where 0<o<o0,
we find that «(r) must have the Lennard-Jones form
u(r) =—pfrm+vfrm  (4,v>0; n>m>0). (A10)

The answer to the question posed at the beginning of the appendix is therefore that the
only solution of equation (A 3) is the Lennard-Jones form (A 10). And consequently the
Lennard-Jones form of the intermolecular energy function is implied by the condition
that a random conformal mixture obeys the law of corresponding states.

Note added in proof, 17 July 1957. Chaundy & McLeod (1957) have derived the solution
(A 10) directly from the functional equation (A 4) by means of elementary, and very elegant,
mathematics.
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